DA 193
DA 193 | |
---|---|
Observation data (J2000.0 epoch) | |
Constellation | Auriga |
Right ascension | 05h 55m 30.805s |
Declination | +39° 48′ 49.165″ |
Redshift | 2.365000 |
Heliocentric radial velocity | 709,009 km/s |
Distance | 10.545 Gly |
Apparent magnitude (V) | 18.3 |
Characteristics | |
Type | Blazar |
Other designations | |
SWIFT J0555.5+3946, WMAP 100, TXS 0552+398, 2XMM J055530.7+394848 |
DA 193 is a blazar[1] located in the constellation of Auriga. It has a high redshift of 2.365.[2][3] It was first discovered as an unknown astronomical radio source in 1971 by D.G. MacDonell and A.H. Bridle.[4] This is a low polarized quasar[5] containing a classic homogeneous synchrotron self-absorption spectrum.[6] The radio spectrum of this source shows a turnover frequency at 5 GHz[5] and this object has also been referred to as a gigahertz-peak spectrum source.[7][8]
DA 193 is found variable on the electromagnetic spectrum. It is bright in X-rays and displays a flat X-ray spectrum that is above 10 keV. During the first week of January 2018, it underwent a giga-electron volt (GeV) flare which was detected by Fermi-LAT.[9] This GeV flare exhibited from DA 193 showed an exceeded binned gamma ray flux (1 x 10-6 ph cm-2 s-1) and was found to be extremely luminous (Lγ = (1.3 ± 0.4) x 1050 erg s-1). When observing its hard gamma-ray spectrum, the flare in DA 193 was confirmed to be a rare sight. In the optical-X-ray energy range, it shows an insignificant flux meaning its source went back to its quiescence state.[10]
DA 193 contains one of the most compact radio sources known on both millisecond and arcsecond scales.[2] In its radio structure, there are four components in the core region with the suggestion of a weak component located 2.3 mas. There is presence of a short jet extending towards the western direction.[11] Furthermore, DA 193 has a simple core-halo structure according to VLBI Observations, with the major axis of the halo having a 110° position angle. This halo's position angle is found alike to the linear polarization position angle.[5]
The central supermassive black hole of DA 193 is estimated to be (5.5 ± 0.9) x 109 Mʘ based on calculations of a single optical spectroscopic emission line information, derived from usage of C IV emission lines and acquiring empirical relations proposed by Yue Shen. Its accretion disk luminosity is estimated as (1.3 ± 0.1) x 1047 erg s-1.[10]
DA 193 has one close companion 2.9" to the north. The companion is found connected to the quasar via tidal interactions. Both objects are situated in a dense compact galaxy group.[8][12]
References
[edit]- ^ Nowakowski, Tomasz; Phys.org. "Luminous gamma-ray flare detected from the blazar DA 193". phys.org. Retrieved 2024-10-29.
- ^ a b Wang, W. H.; Hong, X. Y.; Jiang, D. R.; Venturi, T.; Chen, Y. J.; An, T. (December 2001). "An accelerated jet in DA193?" (PDF). Astronomy & Astrophysics. 380 (1): 123–129. doi:10.1051/0004-6361:20011439. ISSN 0004-6361.
- ^ Fey, A. L.; Spangler, S. R.; Mutel, R. L.; Benson, J. M. (August 1985). "VLBI observations at 22.2 gigahertz of the radio source 0552 + 398 (DA 193)". The Astrophysical Journal. 295: 134. doi:10.1086/163357. ISSN 0004-637X.
- ^ MacDonell, D. G.; Bridle, A. H. (1971-11-01). "Two Variable Radio Sources". Nature Physical Science. 234 (48): 88–90. Bibcode:1971NPhS..234...88M. doi:10.1038/physci234088a0. ISSN 0300-8746.
- ^ a b c Schilizzi, R.T.; Shaver, P.A. (1981). "VLBI observations of the quasar DA 193". Astronomy & Astrophysics. 96: 365–368.
- ^ Spangler, S. R.; Mutel, R. L.; Benson, J. M. (August 1983). "VLBI observations of the radio sources 0552 + 398 and 1848 + 283 - Measurements of the departure from equipartition". The Astrophysical Journal. 271: 44. doi:10.1086/161174. ISSN 0004-637X.
- ^ Lister, M. L.; Cohen, M. H.; Homan, D. C.; Kadler, M.; Kellermann, K. I.; Kovalev, Y. Y.; Ros, E.; Savolainen, T.; Zensus, J. A. (2009-11-05). "MOJAVE: Monitoring Of Jets in Active Galactic Nuclei With VLBA Experiments. VI. Kinematics Analysis Of a Complete Sample of Blazar Jets". The Astronomical Journal. 138 (6): 1874–1892. doi:10.1088/0004-6256/138/6/1874. ISSN 0004-6256.
- ^ a b Torniainen, I.; Tornikoski, M.; Teräsranta, H.; Aller, M. F.; Aller, H. D. (2005-05-13). "Long term variability of gigahertz-peaked spectrum sources and candidates" (PDF). Astronomy & Astrophysics. 435 (3): 839–856. doi:10.1051/0004-6361:20041886. ISSN 0004-6361.
- ^ Angioni, R.; Cheung, C. C. (2018-01-01). "Fermi-LAT detection of a new gamma-ray source associated with the high-redshift FSRQ TXS 0552+398". The Astronomer's Telegram. 11137: 1. Bibcode:2018ATel11137....1A.
- ^ a b Paliya, Vaidehi S.; Ajello, M.; Ojha, R.; Angioni, R.; Cheung, C. C.; Tanada, K.; Pursimo, T.; Galindo, P.; Losada, I. R.; Siltala, L.; Djupvik, A. A.; Marcotulli, L.; Hartmann, D. (February 2019). "Detection of a Gamma-Ray Flare from the High-redshift Blazar DA 193". The Astrophysical Journal. 871 (2): 211. doi:10.3847/1538-4357/aafa10. ISSN 0004-637X.
- ^ Lister, Matthew L.; Marscher, Alan P.; Gear, W. K. (1998-09-10). "Submilliarcsecond Polarimetric Imaging of Blazar Jets at 43 GHz". The Astrophysical Journal. 504 (2): 702–719. doi:10.1086/306112. ISSN 0004-637X.
- ^ Hutchings, J. B.; Crampton, David; Morris, S. L.; Durand, D.; Steinbring, E. (March 1999). "QSO Hosts and Environments at z = 0.9–4.2: JHK Images with Adaptive Optics". The Astronomical Journal. 117 (3): 1109–1121. doi:10.1086/300787. ISSN 0004-6256.