Commutant-associative algebra
Appearance
In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom:
- ,
where [A, B] = AB − BA is the commutator of A and B and (A, B, C) = (AB)C – A(BC) is the associator of A, B and C.
In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra.
See also
[edit]References
[edit]- A. Elduque, H. C. Myung Mutations of alternative algebras, Kluwer Academic Publishers, Boston, 1994, ISBN 0-7923-2735-7
- V.T. Filippov (2001) [1994], "Mal'tsev algebra", Encyclopedia of Mathematics, EMS Press
- M.V. Karasev, V.P. Maslov, Nonlinear Poisson Brackets: Geometry and Quantization. American Mathematical Society, Providence, 1993.
- A.G. Kurosh, Lectures on general algebra. Translated from the Russian edition (Moscow, 1960) by K. A. Hirsch. Chelsea, New York, 1963. 335 pp. ISBN 0-8284-0168-3 ISBN 978-0-8284-0168-5
- A.G. Kurosh, General algebra. Lectures for the academic year 1969/70. Nauka, Moscow,1974. (In Russian)
- A.I. Mal'tsev, Algebraic systems. Springer, 1973. (Translated from Russian)
- A.I. Mal'tsev, Analytic loops. Mat. Sb., 36 : 3 (1955) pp. 569–576 (In Russian)
- Schafer, R.D. (1995). An Introduction to Nonassociative Algebras. New York: Dover Publications. ISBN 0-486-68813-5.
- V.E. Tarasov, "Quantum dissipative systems: IV. Analogues of Lie algebras and groups" Theoretical and Mathematical Physics. Vol.110. No.2. (1997) pp.168-178.
- V.E. Tarasov Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. Elsevier Science, Amsterdam, Boston, London, New York, 2008. ISBN 0-444-53091-6 ISBN 9780444530912
- Zhevlakov, K.A. (2001) [1994], "Alternative rings and algebras", Encyclopedia of Mathematics, EMS Press