Jump to content

Chromatography detector

From Wikipedia, the free encyclopedia

A chromatography detector is a device that detects and quantifies separated compounds as they elute from the chromatographic column. These detectors are integral to various chromatographic techniques, such as gas chromatography,[1] liquid chromatography, and high-performance liquid chromatography,[2] and supercritical fluid chromatography[3] among others. The main function of a chromatography detector is to translate the physical or chemical properties of the analyte molecules into measurable signal, typically electrical signal, that can be displayed as a function of time in a graphical presentation, called a chromatograms. Chromatograms can provide valuable information about the composition and concentration of the components in the sample.

Detectors operate based on specific principles, including optical, electrochemical, thermal conductivity, fluorescence, mass spectrometry, and more. Each type of detector has its unique capabilities and is suitable for specific applications, depending on the nature of the analytes and the sensitivity and selectivity required for the analysis.

There are two general types of detectors: destructive and non-destructive. The destructive detectors perform continuous transformation of the column effluent (burning, evaporation or mixing with reagents) with subsequent measurement of some physical property of the resulting material (plasma, aerosol or reaction mixture). The non-destructive detectors are directly measuring some property of the column eluent (for example, ultraviolet absorption) and thus affords greater analyte recovery.

Destructive detectors

[edit]

In liquid chromatography:

In gas chromatography:[9]

In all types of chromatography:

  • Mass spectrometer[19] is in fact hyphenation between the separative instrument and a mass spectrometry instrument to get information on the molecular weight or atomic weight of the solute. In the advanced mass spectrometry technologies there is information on solutes structure and even chemical properties. The hyphenation between ultra high performance chromatography[20] with high resolution mass spectrometers[21] revolutionalized entire new scientific fields of research and application, such as toxicology, proteomics, lipidomics, genomics, metabolomics and metabonomics.[22]

Non-destructive detectors

[edit]

Non-destructive detectors in liquid chromatography:[23]

  • Ultraviolet light detectors, fixed or variable wavelength, which includes diode array detectors. The ultraviolet light absorption of the effluent is continuously measured at single or multiple wavelengths. These are by far most popular detectors for liquid chromatography.[24][25]
  • Fluorescence detector. Irradiates the effluent with a light of set wavelength and measure the fluorescence of the effluent at a single or multiple wavelength.[26]
  • Refractive index detector.[27] Continuously measures the refractive index of the effluent. The lowest sensitivity of all detectors. Often used in size exclusion chromatography for polymer analysis.[28]
  • Radio flow detector. Measures radioactivity of the effluent. This detector can be destructive if a scintillation cocktail is continuously added to the effluent.
  • Chiral detector continuously measures the optical angle of rotation of the effluent. It is used only when chiral compounds are being analyzed.[29]
  • Conductivity monitor.[23] Continuously measures the conductivity of the effluent. Used only when conductive eluents (water or alcohols) are used.

Non-destructive detectors in gas chromatography:[30]

References

[edit]
  1. ^ Adlard, E.R.; Juvet, R.S. (January 1975). "A Review of Detectors for Gas Chromatography Part I: Universal Detectors". C R C Critical Reviews in Analytical Chemistry. 5 (1): 03–13. doi:10.1080/10408347508542678. ISSN 0007-8980.
  2. ^ Swartz, Michael (2010-07-13). "HPLC Detectors: A Brief Review". Journal of Liquid Chromatography & Related Technologies. 33 (9–12): 1130–1150. doi:10.1080/10826076.2010.484356. ISSN 1082-6076. S2CID 39911656.
  3. ^ West, Caroline (2018-10-01). "Current trends in supercritical fluid chromatography". Analytical and Bioanalytical Chemistry. 410 (25): 6441–6457. doi:10.1007/s00216-018-1267-4. ISSN 1618-2650. PMID 30051210. S2CID 51725022.
  4. ^ Vehovec, Tanja; Obreza, Aleš (2010-03-05). "Review of operating principle and applications of the charged aerosol detector". Journal of Chromatography A. 1217 (10): 1549–1556. doi:10.1016/j.chroma.2010.01.007. ISSN 0021-9673. PMID 20083252.
  5. ^ Schilling, Klaus; Holzgrabe, Ulrike (2020-05-24). "Recent applications of the Charged Aerosol Detector for liquid chromatography in drug quality control". Journal of Chromatography A. 1619: 460911. doi:10.1016/j.chroma.2020.460911. ISSN 0021-9673. PMID 32007219. S2CID 211015385.
  6. ^ Ghosh, Rajarshi; Kline, Paul (2019-05-14). "HPLC with charged aerosol detector (CAD) as a quality control platform for analysis of carbohydrate polymers". BMC Research Notes. 12 (1): 268. doi:10.1186/s13104-019-4296-y. ISSN 1756-0500. PMC 6518655. PMID 31088532.
  7. ^ Dreux, M.; Lafosse, M. (1995-01-01), El Rassi, Ziad (ed.), "Chapter 13 Evaporative Light Scattering Detection of Carbohydrates in HPLC", Journal of Chromatography Library, Carbohydrate Analysis, vol. 58, Elsevier, pp. 515–540, doi:10.1016/s0301-4770(08)60518-7, ISBN 9780444899811, retrieved 2023-10-21
  8. ^ Nayak, V. S.; Tan, Z.; Ihnat, P. M.; Russell, R. J.; Grace, M. J. (2012-01-01). "Evaporative Light Scattering Detection Based HPLC Method for the Determination of Polysorbate 80 in Therapeutic Protein Formulations". Journal of Chromatographic Science. 50 (1): 21–25. doi:10.1093/chromsci/bmr015. ISSN 0021-9665. PMC 3252124. PMID 22291052.
  9. ^ Scott, Raymond P. W. (1996). Chromatographic detectors: design, function, and operation. Chromatographic science series. New York, NY: Dekker. ISBN 978-0-8247-9779-9.
  10. ^ "Gas Chromatography (GC) with Flame-Ionization Detection".
  11. ^ Zhou, Jia; Lu, Xiaoqing; Tian, Baoxia; Wang, Chonglong; Shi, Hao; Luo, Chuping; Li, Xiangqian (2020). "A gas chromatography-flame ionization detection method for direct and rapid determination of small molecule volatile organic compounds in aqueous phase". 3 Biotech. 10 (12): 520. doi:10.1007/s13205-020-02523-8. ISSN 2190-572X. PMC 7655889. PMID 33194524.
  12. ^ Ševĉík, Jiří, ed. (1976-01-01), "5. The Flame Ionization Detector (FID)", Journal of Chromatography Library, Detectors In Gas Chromatography, vol. 4, Elsevier, pp. 87–104, doi:10.1016/s0301-4770(08)60433-9, ISBN 9780444998576, retrieved 2023-10-21
  13. ^ Ferguson, D. A.; Luke, L. A. (1979-04-01). "Critical appraisal of the flame photometric detector in petroleum analysis". Chromatographia. 12 (4): 197–203. doi:10.1007/BF02411361. ISSN 1612-1112. S2CID 97533335.
  14. ^ Ševĉík, Jiří, ed. (1976-01-01), "9. The Flame Photometric Detector (FPD)", Journal of Chromatography Library, Detectors In Gas Chromatography, vol. 4, Elsevier, pp. 145–164, doi:10.1016/s0301-4770(08)60437-6, ISBN 9780444998576, retrieved 2023-10-21
  15. ^ Cheskis, Sergey.; Atar, Eitan.; Amirav, Aviv. (1993-03-01). "Pulsed-flame photometer: a novel gas chromatography detector". Analytical Chemistry. 65 (5): 539–555. doi:10.1021/ac00053a010. ISSN 0003-2700.
  16. ^ Burgett, Charles A.; Smith, Douglas H.; Bente, H. Bryan (1977-04-01). "The nitrogen-phosphorus detector and its applications in gas chromatography". Journal of Chromatography A. 134 (1): 57–64. doi:10.1016/S0021-9673(00)82569-8. ISSN 0021-9673.
  17. ^ Wylie, P. L.; Quimby, B. D. (1989). "Applications of gas chromatography with an atomic emission detector". Journal of High Resolution Chromatography. 12 (12): 813–818. doi:10.1002/jhrc.1240121210. ISSN 0935-6304.
  18. ^ van Stee, Leo L. P.; Brinkman, Udo A. Th.; Bagheri, Habib (2002-09-10). "Gas chromatography with atomic emission detection: a powerful technique". TrAC Trends in Analytical Chemistry. 21 (9): 618–626. doi:10.1016/S0165-9936(02)00810-5. ISSN 0165-9936.
  19. ^ Harvey, David J. (2021-01-01), Poole, Colin F. (ed.), "Mass spectrometric detectors for gas chromatography", Gas Chromatography (Second Edition), Handbooks in Separation Science, Amsterdam: Elsevier, pp. 399–424, doi:10.1016/b978-0-12-820675-1.00022-8, ISBN 978-0-12-820675-1, S2CID 235010743, retrieved 2023-10-21
  20. ^ Cielecka-Piontek, Judyta; Zalewski, Przemysław; Jelińska, Anna; Garbacki, Piotr (2013). "UHPLC: The Greening Face of Liquid Chromatography". Chromatographia. 76 (21–22): 1429–1437. doi:10.1007/s10337-013-2434-6. ISSN 0009-5893. PMC 3825615. PMID 24273332.
  21. ^ Maurer, Hans H. (2013-05-31). "What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening?". Journal of Chromatography A. State-of-the art of (UHP)LC--MS(--MS) techniques and their practical application. 1292: 19–24. doi:10.1016/j.chroma.2012.08.069. ISSN 0021-9673. PMID 22964051.
  22. ^ Zaikin, V. G.; Borisov, R. S. (2021-12-01). "Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences". Journal of Analytical Chemistry. 76 (14): 1567–1587. doi:10.1134/S1061934821140094. ISSN 1608-3199. PMC 8693159.
  23. ^ a b R.P.W. Scott (1 February 1986). Liquid Chromatography Detectors. Elsevier. pp. 2–. ISBN 978-0-08-085836-4. Retrieved 2 September 2013.
  24. ^ Logan, Barry K. (1994-03-30). "Liquid chromatography with photodiode array spectrophotometric detection in the forensic sciences". Analytica Chimica Acta. 288 (1): 111–122. doi:10.1016/0003-2670(94)85120-4. ISSN 0003-2670.
  25. ^ W. John Lough; Irving W. Wainer (1995). High Performance Liquid Chromatography: Fundamental Principles and Practice. Blackie Academic & Professional. pp. 120–. ISBN 978-0-7514-0076-2. Retrieved 2 September 2013.
  26. ^ Lingeman, H.; Underberg, W. J. M.; Takadate, A.; Hulshoff, A. (1985). "Fluorescence Detection in High Performance Liquid Chromatography". Journal of Liquid Chromatography. 8 (5): 789–874. doi:10.1080/01483918508067120. ISSN 0148-3919.
  27. ^ Al-Sanea, Mohammad M.; Gamal, Mohammed (2022-07-01). "Critical analytical review: Rare and recent applications of refractive index detector in HPLC chromatographic drug analysis". Microchemical Journal. 178: 107339. doi:10.1016/j.microc.2022.107339. ISSN 0026-265X. S2CID 247277480.
  28. ^ Hong, Mei; Liu, Wei; Liu, Yonggang; Dai, Xuemin; Kang, Yu; Li, Rui; Bao, Feng; Qiu, Xuepeng; Pan, Yanxiong; Ji, Xiangling (2022-11-08). "Improved characterization on molecular weight of polyamic acids using gel permeation chromatography coupled with differential refractive index and multi-angle laser light scattering detectors". Polymer. 260: 125370. doi:10.1016/j.polymer.2022.125370. ISSN 0032-3861. S2CID 252578680.
  29. ^ Bobbitt, Donald R.; Linder, Sean W. (2001-03-01). "Recent advances in chiral detection for high performance liquid chromatography". TrAC Trends in Analytical Chemistry. 20 (3): 111–123. doi:10.1016/S0165-9936(00)00083-2. ISSN 0165-9936.
  30. ^ McNair, Harold Monroe; Miller, James M.; Snow, Nicholas H. (2019). Basic gas chromatography (3rd ed.). Hoboken, NJ: John Wiley & Sons, Inc. ISBN 978-1-119-45073-3.
  31. ^ Rastrello, Fabio; Placidi, Pisana; Scorzoni, Andrea; Cozzani, Enrico; Messina, Marco; Elmi, Ivan; Zampolli, Stefano; Cardinali, Gian Carlo (May 2013). "Thermal Conductivity Detector for Gas Chromatography: Very Wide Gain Range Acquisition System and Experimental Measurements". IEEE Transactions on Instrumentation and Measurement. 62 (5): 974–981. Bibcode:2013ITIM...62..974R. doi:10.1109/TIM.2012.2236723. ISSN 0018-9456. S2CID 33546808.
  32. ^ Wentworth, W.E.; Chen, E.C.M. (1981), Chapter 3 Theory of electron capture, Journal of Chromatography Library, vol. 20, Elsevier, pp. 27–68, doi:10.1016/s0301-4770(08)60127-x, ISBN 9780444419545, retrieved 2023-10-21
  33. ^ Zlatkis, A.; Poole, C.F. (1981). Electron Capture: Theory and Practice in Chromatography. Elsevier. p. 428.
  34. ^ Driscoll, J. N. (1985-11-01). "Review of Photoionization Detection in Gas Chromatography: The First Decade". Journal of Chromatographic Science. 23 (11): 488–492. doi:10.1093/chromsci/23.11.488. ISSN 0021-9665.
  35. ^ Brattoli, Magda; Cisternino, Ezia; Dambruoso, Paolo Rosario; De Gennaro, Gianluigi; Giungato, Pasquale; Mazzone, Antonio; Palmisani, Jolanda; Tutino, Maria (2013). "Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds". Sensors. 13 (12): 16759–16800. Bibcode:2013Senso..1316759B. doi:10.3390/s131216759. ISSN 1424-8220. PMC 3892869. PMID 24316571.
  36. ^ Kim, Chuntae; Lee, Kyung Kwan; Kang, Moon Sung; Shin, Dong-Myeong; Oh, Jin-Woo; Lee, Chang-Soo; Han, Dong-Wook (2022-08-19). "Artificial olfactory sensor technology that mimics the olfactory mechanism: a comprehensive review". Biomaterials Research. 26 (1): 40. doi:10.1186/s40824-022-00287-1. ISSN 2055-7124. PMC 9392354. PMID 35986395.
  37. ^ Song, Jianxin; Chen, Qinqin; Bi, Jinfeng; Meng, Xianjun; Wu, Xinye; Qiao, Yening; Lyu, Ying (2020-11-30). "GC/MS coupled with MOS e-nose and flash GC e-nose for volatile characterization of Chinese jujubes as affected by different drying methods". Food Chemistry. 331: 127201. doi:10.1016/j.foodchem.2020.127201. ISSN 0308-8146. PMID 32562976. S2CID 219959356.