In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations , named for mathematicians Michael Christ and Alexander Kiselev .[ 1]
Continuous filtrations [ edit ]
A continuous filtration of
(
M
,
μ
)
{\displaystyle (M,\mu )}
is a family of measurable sets
{
A
α
}
α
∈
R
{\displaystyle \{A_{\alpha }\}_{\alpha \in \mathbb {R} }}
such that
A
α
↗
M
{\displaystyle A_{\alpha }\nearrow M}
,
⋂
α
∈
R
A
α
=
∅
{\displaystyle \bigcap _{\alpha \in \mathbb {R} }A_{\alpha }=\emptyset }
, and
μ
(
A
β
∖
A
α
)
<
∞
{\displaystyle \mu (A_{\beta }\setminus A_{\alpha })<\infty }
for all
β
>
α
{\displaystyle \beta >\alpha }
(stratific)
lim
ε
→
0
+
μ
(
A
α
+
ε
∖
A
α
)
=
lim
ε
→
0
+
μ
(
A
α
∖
A
α
+
ε
)
=
0
{\displaystyle \lim _{\varepsilon \to 0^{+}}\mu (A_{\alpha +\varepsilon }\setminus A_{\alpha })=\lim _{\varepsilon \to 0^{+}}\mu (A_{\alpha }\setminus A_{\alpha +\varepsilon })=0}
(continuity)
For example,
R
=
M
{\displaystyle \mathbb {R} =M}
with measure
μ
{\displaystyle \mu }
that has no pure points and
A
α
:=
{
{
|
x
|
≤
α
}
,
α
>
0
,
∅
,
α
≤
0.
{\displaystyle A_{\alpha }:={\begin{cases}\{|x|\leq \alpha \},&\alpha >0,\\\emptyset ,&\alpha \leq 0.\end{cases}}}
is a continuous filtration.
Let
1
≤
p
<
q
≤
∞
{\displaystyle 1\leq p<q\leq \infty }
and suppose
T
:
L
p
(
M
,
μ
)
→
L
q
(
N
,
ν
)
{\displaystyle T:L^{p}(M,\mu )\to L^{q}(N,\nu )}
is a bounded linear operator for
σ
−
{\displaystyle \sigma -}
finite
(
M
,
μ
)
,
(
N
,
ν
)
{\displaystyle (M,\mu ),(N,\nu )}
. Define the Christ–Kiselev maximal function
T
∗
f
:=
sup
α
|
T
(
f
χ
α
)
|
,
{\displaystyle T^{*}f:=\sup _{\alpha }|T(f\chi _{\alpha })|,}
where
χ
α
:=
χ
A
α
{\displaystyle \chi _{\alpha }:=\chi _{A_{\alpha }}}
. Then
T
∗
:
L
p
(
M
,
μ
)
→
L
q
(
N
,
ν
)
{\displaystyle T^{*}:L^{p}(M,\mu )\to L^{q}(N,\nu )}
is a bounded operator, and
‖
T
∗
f
‖
q
≤
2
−
(
p
−
1
−
q
−
1
)
(
1
−
2
−
(
p
−
1
−
q
−
1
)
)
−
1
‖
T
‖
‖
f
‖
p
.
{\displaystyle \|T^{*}f\|_{q}\leq 2^{-(p^{-1}-q^{-1})}(1-2^{-(p^{-1}-q^{-1})})^{-1}\|T\|\|f\|_{p}.}
Let
1
≤
p
<
q
≤
∞
{\displaystyle 1\leq p<q\leq \infty }
, and suppose
W
:
ℓ
p
(
Z
)
→
L
q
(
N
,
ν
)
{\displaystyle W:\ell ^{p}(\mathbb {Z} )\to L^{q}(N,\nu )}
is a bounded linear operator for
σ
−
{\displaystyle \sigma -}
finite
(
M
,
μ
)
,
(
N
,
ν
)
{\displaystyle (M,\mu ),(N,\nu )}
. Define, for
a
∈
ℓ
p
(
Z
)
{\displaystyle a\in \ell ^{p}(\mathbb {Z} )}
,
(
χ
n
a
)
:=
{
a
k
,
|
k
|
≤
n
0
,
otherwise
.
{\displaystyle (\chi _{n}a):={\begin{cases}a_{k},&|k|\leq n\\0,&{\text{otherwise}}.\end{cases}}}
and
sup
n
∈
Z
≥
0
|
W
(
χ
n
a
)
|
=:
W
∗
(
a
)
{\displaystyle \sup _{n\in \mathbb {Z} ^{\geq 0}}|W(\chi _{n}a)|=:W^{*}(a)}
. Then
W
∗
:
ℓ
p
(
Z
)
→
L
q
(
N
,
ν
)
{\displaystyle W^{*}:\ell ^{p}(\mathbb {Z} )\to L^{q}(N,\nu )}
is a bounded operator.
Here,
A
α
=
{
[
−
α
,
α
]
,
α
>
0
∅
,
α
≤
0
{\displaystyle A_{\alpha }={\begin{cases}[-\alpha ,\alpha ],&\alpha >0\\\emptyset ,&\alpha \leq 0\end{cases}}}
.
The discrete version can be proved from the continuum version through constructing
T
:
L
p
(
R
,
d
x
)
→
L
q
(
N
,
ν
)
{\displaystyle T:L^{p}(\mathbb {R} ,dx)\to L^{q}(N,\nu )}
.[ 2]
The Christ–Kiselev maximal inequality has applications to the Fourier transform and convergence of Fourier series , as well as to the study of Schrödinger operators.[ 1] [ 2]
^ a b M. Christ, A. Kiselev, Maximal functions associated to filtrations. J. Funct. Anal. 179 (2001), no. 2, 409--425. "Archived copy" (PDF) . Archived from the original (PDF) on 2014-05-14. Retrieved 2014-05-12 .{{cite web }}
: CS1 maint: archived copy as title (link )
^ a b Chapter 9 - Harmonic Analysis "Archived copy" (PDF) . Archived from the original (PDF) on 2014-05-13. Retrieved 2014-05-12 .{{cite web }}
: CS1 maint: archived copy as title (link )