A theorem that determines the radius of convergence of a power series.
In mathematics , the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard , describing the radius of convergence of a power series . It was published in 1821 by Cauchy,[ 1] but remained relatively unknown until Hadamard rediscovered it.[ 2] Hadamard's first publication of this result was in 1888;[ 3] he also included it as part of his 1892 Ph.D. thesis.[ 4]
Theorem for one complex variable [ edit ]
Consider the formal power series in one complex variable z of the form
f
(
z
)
=
∑
n
=
0
∞
c
n
(
z
−
a
)
n
{\displaystyle f(z)=\sum _{n=0}^{\infty }c_{n}(z-a)^{n}}
where
a
,
c
n
∈
C
.
{\displaystyle a,c_{n}\in \mathbb {C} .}
Then the radius of convergence
R
{\displaystyle R}
of f at the point a is given by
1
R
=
lim sup
n
→
∞
(
|
c
n
|
1
/
n
)
{\displaystyle {\frac {1}{R}}=\limsup _{n\to \infty }\left(|c_{n}|^{1/n}\right)}
where lim sup denotes the limit superior , the limit as n approaches infinity of the supremum of the sequence values after the n th position. If the sequence values are unbounded so that the lim sup is ∞, then the power series does not converge near a , while if the lim sup is 0 then the radius of convergence is ∞, meaning that the series converges on the entire plane.
Without loss of generality assume that
a
=
0
{\displaystyle a=0}
. We will show first that the power series
∑
n
c
n
z
n
{\textstyle \sum _{n}c_{n}z^{n}}
converges for
|
z
|
<
R
{\displaystyle |z|<R}
, and then that it diverges for
|
z
|
>
R
{\displaystyle |z|>R}
.
First suppose
|
z
|
<
R
{\displaystyle |z|<R}
. Let
t
=
1
/
R
{\displaystyle t=1/R}
not be
0
{\displaystyle 0}
or
±
∞
.
{\displaystyle \pm \infty .}
For any
ε
>
0
{\displaystyle \varepsilon >0}
, there exists only a finite number of
n
{\displaystyle n}
such that
|
c
n
|
n
≥
t
+
ε
{\textstyle {\sqrt[{n}]{|c_{n}|}}\geq t+\varepsilon }
.
Now
|
c
n
|
≤
(
t
+
ε
)
n
{\displaystyle |c_{n}|\leq (t+\varepsilon )^{n}}
for all but a finite number of
c
n
{\displaystyle c_{n}}
, so the series
∑
n
c
n
z
n
{\textstyle \sum _{n}c_{n}z^{n}}
converges if
|
z
|
<
1
/
(
t
+
ε
)
{\displaystyle |z|<1/(t+\varepsilon )}
. This proves the first part.
Conversely, for
ε
>
0
{\displaystyle \varepsilon >0}
,
|
c
n
|
≥
(
t
−
ε
)
n
{\displaystyle |c_{n}|\geq (t-\varepsilon )^{n}}
for infinitely many
c
n
{\displaystyle c_{n}}
, so if
|
z
|
=
1
/
(
t
−
ε
)
>
R
{\displaystyle |z|=1/(t-\varepsilon )>R}
, we see that the series cannot converge because its n th term does not tend to 0.[ 5]
Theorem for several complex variables [ edit ]
Let
α
{\displaystyle \alpha }
be an n -dimensional vector of natural numbers (
α
=
(
α
1
,
⋯
,
α
n
)
∈
N
n
{\displaystyle \alpha =(\alpha _{1},\cdots ,\alpha _{n})\in \mathbb {N} ^{n}}
) with
|
|
α
|
|
=
α
1
+
⋯
+
α
n
{\displaystyle ||\alpha ||=\alpha _{1}+\cdots +\alpha _{n}}
, then
f
(
x
)
{\displaystyle f(x)}
converges with radius of convergence
ρ
=
(
ρ
1
,
⋯
,
ρ
n
)
∈
R
n
{\displaystyle \rho =(\rho _{1},\cdots ,\rho _{n})\in \mathbb {R} ^{n}}
with
ρ
α
=
ρ
1
α
1
⋯
ρ
n
α
n
{\displaystyle \rho ^{\alpha }=\rho _{1}^{\alpha _{1}}\cdots \rho _{n}^{\alpha _{n}}}
if and only if
lim sup
|
|
α
|
|
→
∞
|
c
α
|
ρ
α
|
|
α
|
|
=
1
{\displaystyle \limsup _{||\alpha ||\to \infty }{\sqrt[{||\alpha ||}]{|c_{\alpha }|\rho ^{\alpha }}}=1}
to the multidimensional power series
∑
α
≥
0
c
α
(
z
−
a
)
α
:=
∑
α
1
≥
0
,
…
,
α
n
≥
0
c
α
1
,
…
,
α
n
(
z
1
−
a
1
)
α
1
⋯
(
z
n
−
a
n
)
α
n
{\displaystyle \sum _{\alpha \geq 0}c_{\alpha }(z-a)^{\alpha }:=\sum _{\alpha _{1}\geq 0,\ldots ,\alpha _{n}\geq 0}c_{\alpha _{1},\ldots ,\alpha _{n}}(z_{1}-a_{1})^{\alpha _{1}}\cdots (z_{n}-a_{n})^{\alpha _{n}}}
From [ 6]
Set
z
=
a
+
t
ρ
{\displaystyle z=a+t\rho }
(
z
i
=
a
i
+
t
ρ
i
)
{\displaystyle (z_{i}=a_{i}+t\rho _{i})}
, then
∑
α
≥
0
c
α
(
z
−
a
)
α
=
∑
α
≥
0
c
α
ρ
α
t
|
|
α
|
|
=
∑
μ
≥
0
(
∑
|
|
α
|
|
=
μ
|
c
α
|
ρ
α
)
t
μ
{\displaystyle \sum _{\alpha \geq 0}c_{\alpha }(z-a)^{\alpha }=\sum _{\alpha \geq 0}c_{\alpha }\rho ^{\alpha }t^{||\alpha ||}=\sum _{\mu \geq 0}\left(\sum _{||\alpha ||=\mu }|c_{\alpha }|\rho ^{\alpha }\right)t^{\mu }}
This is a power series in one variable
t
{\displaystyle t}
which converges for
|
t
|
<
1
{\displaystyle |t|<1}
and diverges for
|
t
|
>
1
{\displaystyle |t|>1}
. Therefore, by the Cauchy-Hadamard theorem for one variable
lim sup
μ
→
∞
∑
|
|
α
|
|
=
μ
|
c
α
|
ρ
α
μ
=
1
{\displaystyle \limsup _{\mu \to \infty }{\sqrt[{\mu }]{\sum _{||\alpha ||=\mu }|c_{\alpha }|\rho ^{\alpha }}}=1}
Setting
|
c
m
|
ρ
m
=
max
|
|
α
|
|
=
μ
|
c
α
|
ρ
α
{\displaystyle |c_{m}|\rho ^{m}=\max _{||\alpha ||=\mu }|c_{\alpha }|\rho ^{\alpha }}
gives us an estimate
|
c
m
|
ρ
m
≤
∑
|
|
α
|
|
=
μ
|
c
α
|
ρ
α
≤
(
μ
+
1
)
n
|
c
m
|
ρ
m
{\displaystyle |c_{m}|\rho ^{m}\leq \sum _{||\alpha ||=\mu }|c_{\alpha }|\rho ^{\alpha }\leq (\mu +1)^{n}|c_{m}|\rho ^{m}}
Because
(
μ
+
1
)
n
μ
→
1
{\displaystyle {\sqrt[{\mu }]{(\mu +1)^{n}}}\to 1}
as
μ
→
∞
{\displaystyle \mu \to \infty }
|
c
m
|
ρ
m
μ
≤
∑
|
|
α
|
|
=
μ
|
c
α
|
ρ
α
μ
≤
|
c
m
|
ρ
m
μ
⟹
∑
|
|
α
|
|
=
μ
|
c
α
|
ρ
α
μ
=
|
c
m
|
ρ
m
μ
(
μ
→
∞
)
{\displaystyle {\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}\leq {\sqrt[{\mu }]{\sum _{||\alpha ||=\mu }|c_{\alpha }|\rho ^{\alpha }}}\leq {\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}\implies {\sqrt[{\mu }]{\sum _{||\alpha ||=\mu }|c_{\alpha }|\rho ^{\alpha }}}={\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}\qquad (\mu \to \infty )}
Therefore
lim sup
|
|
α
|
|
→
∞
|
c
α
|
ρ
α
|
|
α
|
|
=
lim sup
μ
→
∞
|
c
m
|
ρ
m
μ
=
1
{\displaystyle \limsup _{||\alpha ||\to \infty }{\sqrt[{||\alpha ||}]{|c_{\alpha }|\rho ^{\alpha }}}=\limsup _{\mu \to \infty }{\sqrt[{\mu }]{|c_{m}|\rho ^{m}}}=1}
^ Cauchy, A. L. (1821), Analyse algébrique .
^ Bottazzini, Umberto (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass , Springer-Verlag, pp. 116–117 , ISBN 978-0-387-96302-0 . Translated from the Italian by Warren Van Egmond.
^ Hadamard, J. , "Sur le rayon de convergence des séries ordonnées suivant les puissances d'une variable", C. R. Acad. Sci. Paris , 106 : 259–262 .
^ Hadamard, J. (1892), "Essai sur l'étude des fonctions données par leur développement de Taylor" , Journal de Mathématiques Pures et Appliquées , 4e Série, VIII . Also in Thèses présentées à la faculté des sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques , Paris: Gauthier-Villars et fils, 1892.
^ Lang, Serge (2002), Complex Analysis: Fourth Edition , Springer, pp. 55–56, ISBN 0-387-98592-1 Graduate Texts in Mathematics
^ Shabat, B.V. (1992), Introduction to complex analysis Part II. Functions of several variables , American Mathematical Society, pp. 32–33, ISBN 978-0821819753