Carachipampa
Carachipampa is a Pleistocene volcanic cone in Argentina. Part of a wider, regional volcanic field, it has produced lava flows consisting of andesite. It is surrounded by a lake and a salt flat, the former of which features an ecosystem formed by microbes.
Volcano
[edit]Carachipampa lies in the Catamarca Province[1] of northwestern Argentina.[2] It is a black volcanic cone with its summit on the southeastern crater rim, surrounded by a field of lava flows that were fed from the northwestern side of the cone.[3] Part of the southeastern flank of the cone is collapsed.[4] The occurrence of eroded scoria cones and lava domes has been reported.[5] The lava flows reach thicknesses of 2–6 metres (6 ft 7 in – 19 ft 8 in) and lengths of 8 kilometres (5.0 mi),[6] and consist of mafic andesite[7] that defines a calc-alkaline suite. Phenocrysts are mostly amphibole, clinopyroxene and olivine.[8] Rock samples from the volcano have been analyzed.[9]
The volcano erupted 750,000 years ago[10] and is part of the fourth volcanic stage in the region.[7] There are a number of mafic volcanic centres in the southern Puna, including Antofagasta de la Sierra north of Carachipampa.[11] Cerro Blanco farther southwest produced ignimbrites, which cover the terrain southwest of Carachipampa,[12] and is still active.[2] Seismic tomography has identified a low-speed anomaly underneath Carachipampa, which connects to it and to several neighbouring volcanoes like Galán and Ojos del Salado.[13] The so-called "Cerro Galán Magmatic Body" lies north of Carachipampa; the volcano lies above its margin.[14] There is evidence of neotectonic activity at Carachipampa.[15]
Surroundings
[edit]The cone lies at the centre, and the lowest point, of a[16] 149 by 64 kilometres (93 mi × 40 mi) wide[17] deserted, vegetation-free[a] plain[19] that is one of the lowest-elevation areas in the Puna.[20] To the west, across a ridge, lies the Incahuasi basin,[21] to the east there is a sharp demarcation with[22] the Campo de Piedra Pomez[2] with numerous yardangs carved into ignimbrites. Permian red beds and Paleogene sediments crop out close to Carachipampa.[2] Other rock formations around the Carachipampa plain range in age from Neoproterozoic over Devonian. The basin is filled with sediments, reaching thicknesses of 700 metres (2,300 ft).[17] The basin is notable for the giant (up to 1.5 metres (4 ft 11 in) high), wind-formed megaripples;[23] they are found southwest of Carachipampa in the valley that runs to Cerro Blanco.[24] Winds have removed fine materials, leaving only granular material on the plain,[19] and eroded sediments from wetlands.[25]
Climate and water
[edit]The region has a cold and arid climate,[22] as the Andes prevent moisture from the Atlantic. Winds blow mostly from the northwest and can be intense, explaining the widespread aeolian landforms at Carachipampa.[26] Other traits of the climate are high UV radiation, large daily temperature fluctuations and frequent drying, which make the environment similar to that experienced on Mars.[1]
There are two major waterbodies at Carachipampa,[27] which surround the volcano:[28]
- Laguna Carachipampa covers a surface of 0.079 square kilometres (0.031 sq mi). Located at 2,915 metres (9,564 ft)[29] or 3,018 metres (9,902 ft) elevation,[30] it is hypersaline[31] and contains salty chloride- and sulfate-rich waters[32] which precipitate aragonite.[33] Its waters are mostly more than 60 years old.[34] The lake is flanked by pools of hydrothermal water,[35] and both them and (in lesser measure) the lake[35] feature a microbial ecosystem, similar to a number of other Puna lakes.[36] The microbes produce microbial mats, oncoids[b] and stromatolites[38] consisting of carbonate minerals.[30] They extend along 2 kilometres (1.2 mi) of the lake, occasionally forming flat pavements.[35] Flamingos breed at Laguna Carachipampa;[39] other birds encountered at Carachipampa include the Puna plover.[40]
- Salar Carachipampa is a salt pan south-southeast from the volcano.[41] It has an area of 50 square kilometres (19 sq mi)[42] and sometimes fills with water, forming an ephemeral lake.[2] It is partially covered by wind-transported sediments.[43] A smaller volcano lies south of the salt pan.[44]
Several watercourses, many of which are ephemeral, flow into the Carachipampa waterbodies. These include the Pirica and Colorado rivers and the creek at El Peñón.[27] At least one creek feeds the waterbodies.[45] The Pirica and Colorado rivers may still flow to Carachipampa.[46] Wetlands are found mainly north of Carachipampa[47] and cover an area of about 0.361 square kilometres (0.139 sq mi).[48]
It is probable that in the past, the basin extended to Fiambalá, before it was separated by volcanic activity.[49] Later, activity of the Antofagasta de la Sierra volcanoes farther north removed inflow from the north[50] although it is possible that water still flows underground from Antofagasta to Carachipampa.[51] Until 1905 years ago, the climate was wetter and a terrace formed at Laguna Carachipampa.[52] Active wetlands[53] and beach environments developed around 644 years ago.[52]
Human use
[edit]The town of El Peñón is east of Carachipampa,[2] and the volcano/lake is a tourism destination.[48] National Route 53[54][c] from Belen to Antofagasta de la Sierra, Catamarca passes by Carachipampa.[41] There is no evidence of agriculture or archeological sites around Carachipampa,[57] but the inhabitants of Peñón used the wetlands as pastures.[47] In 1978, there was a habitation named Carachi Pampa.[58] Bolivia briefly claimed the southern Puna including Carachipampa during the Puna de Atacama dispute in the early 20th century.[59]
Owing to its extreme environmental conditions, Carachipampa has been used as an Earth-based analogue to Mars.[1] Alum and salt were extracted from Carachipampa,[60] and presently the company Lake Resources owns rights about a lithium extraction project at Carachipampa.[61] The name may refer to Quechua pampa, "plain"; the first component may be a reference to either kachi, "salt", or kachina, a type of white ground, or Qáranpampa, "Erial sterile field".[62]
Notes
[edit]References
[edit]- ^ a b c Huidobro et al. 2023, p. 2.
- ^ a b c d e f Favaro et al. 2020, p. 3.
- ^ Sundt 1911, p. 85.
- ^ Coira & Cisterna 2021, p. 97.
- ^ Maro et al. 2020, p. 3.
- ^ Coira & Cisterna 2021, p. 96.
- ^ a b Kay, Coira & Mpodozis 2006, p. 500.
- ^ Maro et al. 2020, p. 4.
- ^ Kay, Coira & Mpodozis 2006, p. 501.
- ^ Coira & Cisterna 2021, p. 32.
- ^ Coira & Cisterna 2021, p. 94.
- ^ Coira & Cisterna 2021, p. 31.
- ^ Calixto et al. 2013, p. 4297.
- ^ Maro et al. 2020, p. 15.
- ^ Olivera, Tchilinguirian & Grana 2004, p. 237.
- ^ Pardo-Igúzquiza & Dowd 2021, p. 1033.
- ^ a b Gozalvez, Álvarez & Seggiaro 2023, p. 11.
- ^ Grau et al. 2018, p. 150.
- ^ a b Estrada 1999, p. 10.
- ^ Pintar 2014.
- ^ Sundt 1911, p. 77.
- ^ a b Favaro, Hugenholtz & Barchyn 2021, p. 3064.
- ^ Yizhaq 2008, p. 1369.
- ^ Hugenholtz, Barchyn & Favaro 2015, p. 136.
- ^ Tchilinguirian & Olivera 2012, p. 53.
- ^ Favaro et al. 2020, p. 4.
- ^ a b Zamora 2022, p. 225.
- ^ Muñoz 1894, p. 43.
- ^ Mirande 2022, p. 100.
- ^ a b Vignale et al. 2022, p. 8.
- ^ Maidana & Seeligmann 2015.
- ^ Seeligmann & Maidana 2019, p. 477.
- ^ Grau et al. 2018, p. 251.
- ^ Vignoni et al. 2024, p. 74.
- ^ a b c Farías 2020, p. 256.
- ^ Vignale et al. 2022, p. 5.
- ^ Vignale et al. 2022, p. 3.
- ^ Vignale et al. 2022, p. 6.
- ^ Torres et al. 2019, p. 6.
- ^ Caziani et al. 2001, p. 114.
- ^ a b Milana 2009, p. 343.
- ^ Munné 1978, p. 260.
- ^ Milana 2009, p. 344.
- ^ Maro et al. 2020, p. 2.
- ^ Sundt 1911, p. 94.
- ^ Estrada 1999, p. 151.
- ^ a b Muñoz 1894, p. 120.
- ^ a b Caziani et al. 2001, p. 106.
- ^ Sundt 1911, p. 78.
- ^ Sundt 1911, p. 86.
- ^ Estrada 1999, p. 11.
- ^ a b Grana et al. 2016.
- ^ Tchilinguirian & Olivera 2012, p. 54.
- ^ Munné 1978, p. 267.
- ^ Vitry 2003, p. 155.
- ^ Vitry 2003, p. 158.
- ^ Tchilinguirian & Olivera 2012, p. 56.
- ^ Munné 1978, p. 262.
- ^ Pizarro 2010, p. 354.
- ^ Zamora 2022, p. 244.
- ^ Argento 2022, p. 56.
- ^ Estrada 1999, p. 13.
Sources
[edit]- Argento, M. (2022). "Tras la morada oculta del litio en Argentina". BORDES (in Spanish). 25: 51–59.
- Calixto, Frank J.; Sandvol, Eric; Kay, Suzanne; Mulcahy, Patrick; Heit, Benjamin; Yuan, Xiaohui; Coira, Beatriz; Comte, Diana; Alvarado, Patricia (October 2013). "Velocity structure beneath the southern Puna plateau: Evidence for delamination". Geochemistry, Geophysics, Geosystems. 14 (10): 4292–4305. Bibcode:2013GGG....14.4292C. doi:10.1002/ggge.20266. hdl:11336/25419.
- Caziani, Sandra M.; Derlindati, Enrique J.; Tálamo, Andrés; Sureda, Ana L.; Trucco, Carlos E.; Nicolossi, Guillermo (2001). "Waterbird Richness in Altiplano Wetlands of Northwestern Argentina". Waterbirds: The International Journal of Waterbird Biology. 24 (1): 103–117. doi:10.2307/1522249. hdl:11336/128853. ISSN 1524-4695. JSTOR 1522249.
- Coira, Beatriz L.L.; Cisterna, Clara Eugenia (2021). Textures, Structures and Processes of Volcanic Successions: Examples from Southern Central Andes (Northwestern Argentina, 22º–28ºS). Springer Earth System Sciences. Cham: Springer International Publishing. doi:10.1007/978-3-030-52010-6. ISBN 978-3-030-52009-0. S2CID 221767857.
- Estrada, Carlos (1999). Proyecto de optimización de uso del recurso hídrico del río Punilla con fines agropecuarios en el paraje de Paicuqui, departamento Antofagasta de la Sierra, provincia de Catamarca (Report) (in Spanish).
- Farías, María Eugenia, ed. (2020). Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites. Cham: Springer International Publishing. doi:10.1007/978-3-030-36192-1. ISBN 978-3-030-36191-4. S2CID 218912960.
- Favaro, Elena A.; Hugenholtz, Christopher H.; Barchyn, Thomas E.; Gough, Tyler R. (August 2020). "Wind regime, sediment transport, and landscape dynamics at a Mars analogue site in the Andes Mountains of Northwestern Argentina". Icarus. 346: 113765. Bibcode:2020Icar..34613765F. doi:10.1016/j.icarus.2020.113765. S2CID 219023070.
- Favaro, Elena A.; Hugenholtz, Chris H.; Barchyn, Thomas E. (December 2021). "Antecedent controls on the spatial organization of yardangs on the Puna Plateau, north-western Argentina" (PDF). Earth Surface Processes and Landforms. 46 (15): 3063–3077. Bibcode:2021ESPL...46.3063F. doi:10.1002/esp.5212. S2CID 238767500.
- Gozalvez, Martín R.; Álvarez, Dolores; Seggiaro, Raúl E. (2023). Depósitos de Litio en Salmueras de Cuencas Cerradas de la República Argentina: Distribución y Condiciones de Formación (Report). Serie de Contribuciones Técnicas. Recursos Minerales (in Spanish). Buenos Aires: Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales. Dirección de Recursos Minerales. p. 20.
- Grana, Lorena; Tchilinguirian, Pablo; Olivera, Daniel E.; Laprida, Cecilia; Maidana, Nora I. (June 2016). "Síntesis paleoambiental en Antofagasta de la Sierra: heterogeneidad ambiental y ocupaciones humanas en los últimos 7200 años cal AP". Intersecciones en Antropología. 17: 19–32. ISSN 1850-373X.
- Grau, HR; Babot, J; Izquierdo, AE; Grau, A, eds. (2018). La Puna Argentina: naturaleza y cultura (PDF). Serie Conservación de la Naturaleza 24 (in Spanish). Tucumán, Argentina.
{{cite book}}
: CS1 maint: location missing publisher (link) - Hugenholtz, Chris H.; Barchyn, Thomas E.; Favaro, Elena A. (September 2015). "Formation of periodic bedrock ridges on Earth". Aeolian Research. 18: 135–144. doi:10.1016/j.aeolia.2015.07.002.
- Huidobro, J.; Madariaga, J.M.; Carrizo, D.; Laserna, J.L.; Rull, F.; Martínez-Frías, J.; Aramendia, J.; Sánchez-García, L.; García-Gómez, L.; Vignale, F.A.; Farías, M.E.; Veneranda, M.; Población, I.; Cabalín, L.M.; López-Reyes, G.; Coloma, L.; García-Florentino, C.; Arana, G.; Castro, K.; Delgado, T.; Álvarez-Llamas, C.; Fortes, F.J.; Manrique, J.A. (October 2023). "Multi-analytical characterization of an oncoid from a high altitude hypersaline lake using techniques employed in the Mars2020 and Rosalind Franklin missions on Mars". Analytica Chimica Acta. 1276: 341632. Bibcode:2023AcAC.127641632H. doi:10.1016/j.aca.2023.341632. hdl:10261/358814. PMID 37573113.
- Kay, Suzanne Mahlburg; Coira, Beatriz; Mpodozis, Constantino (August 2006). LATE NEOGENE VOLCANISM IN THE CERRO BLANCO REGIONOF THE PUNA AUSTRAL, ARGENTINA (~26.5°S, ~67.5°W) (PDF). XI Congreso Geologico Chileno. Archived from the original (PDF) on July 27, 2020 – via ResearchGate.
- Maidana, Nora I.; Seeligmann, Claudia T. (December 2015). "Diatomeas (Bacillariophyceae) en humedales de altura de la Provincia de Catamarca (Argentina): III". Boletín de la Sociedad Argentina de Botánica. 50 (4): 447–466. doi:10.31055/1851.2372.v50.n4.12908. hdl:11336/19500. ISSN 1851-2372.
- Maro, Guadalupe; Trumbull, Robert B.; Caffe, Pablo J.; Jofré, Cynthia B.; Filipovich, Rubén E.; Frick, Daniel A. (December 2020). "The composition of amphibole phenocrysts in Neogene mafic volcanic rocks from the Puna plateau: Insights on the evolution of hydrous back-arc magmas". Lithos. 376–377: 105738. Bibcode:2020Litho.37605738M. doi:10.1016/j.lithos.2020.105738. hdl:11336/140095.
- Milana, Juan Pablo (April 2009). "Largest wind ripples on Earth?". Geology. 37 (4): 343–346. Bibcode:2009Geo....37..343M. doi:10.1130/G25382A.1 – via Academia.edu.
- Mirande, Virginia (June 2022). "Clorofitas, euglenofitas y cianobacterias de humedales de altura de tres provincias argentinas". Lilloa. 59 (1): 94–111. doi:10.30550/j.lil/2022.59.1/2022.06.03. ISSN 2346-9641.
- Munné, N. (1978). "El Departamento de Antofagasta de la Sierra". Geografıa de Catamarca (in Spanish) – via Google Books.
- Olivera, Daniel Enzo; Tchilinguirian, Pablo; Grana, Lorena (2004). "Paleoambiente y arqueología en la puna meridional argentina: archivos ambientales, escalas de análisis y registro arqueológico". Relaciones de la Sociedad Argentina de Antropología (in Spanish). tomo 29.
- Muñoz, Santiago (1894). Jeografía descriptiva de las provincias de Atacama i Antofagasta (in Spanish). Impr. Gutenberg – via Google Books.
- Pardo-Igúzquiza, E.; Dowd, P. A. (July 2021). "Identification and Delineation of the Earth's Large-Scale Closed Terrain Depressions and Their Fractal Size Distribution". Mathematical Geosciences. 53 (5): 1027–1045. Bibcode:2021MaGeo..53.1027P. doi:10.1007/s11004-020-09888-9. S2CID 221501051.
- Pintar, Elizabeth (2014). "Continuidades e Hiatos Ocupacionales Durante el Holoceno Medio en el Borde Oriental de la Puna Salada, Antofagasta de la Sierra, Argentina". Chungará (Arica). 46 (1): 51–72. doi:10.4067/S0717-73562014000100004. ISSN 0717-7356.
- Pizarro, José Antonio Gonzalez (30 August 2010). "La provincia de Antofagasta. Creación y consolidación de un territorio nuevo en el Estado chileno: 1888–1933". Revista de Indias (in Spanish). 70 (249): 345–380. doi:10.3989/revindias.2010.011. ISSN 1988-3188.
- Seeligmann, Claudia T.; Maidana, Nora I. (December 2019). "Consideraciones sobre la comunidad de diatomeas en relación a gradientes de altitud y salinidad en humedales de la Puna y los Altos Andes (Catamarca y Jujuy, Argentina)". Boletín de la Sociedad Argentina de Botánica. 54 (4): 475–486. doi:10.31055/1851.2372.v54.n4.23902. ISSN 1851-2372.
- Sundt, Lorenzo (1911). Estudios jeologicos i topograficos del desierto i puna de Atacama (in Spanish). Vol. 2. Impr. Barcelona – via Google Books.
- Tchilinguirian, Pablo; Olivera, Daniel Enzo (7 December 2012). "Degradación y formación de vegas puneñas (900-150 años AP), Puna Austral (26 S) ¿Respuesta del paisaje al clima o al hombre? Acta geológica 24 (1–2):2012". Acta Geológica Lilloana (in Spanish): 41–61. ISSN 1852-6217.
- Torres, R.; Marconi, P.; Castro, L. B.; Moschione, F.; Bruno, G.; Michelutti, P. L.; Casimiro, S.; Derlindati, E. J. (2019). "New nesting sites of the threatened Andean flamingo in Argentina" (PDF). Flamingo. Bulletin of the IUCN-SSC Wetlands International – Flamingo Specialist Group: 1–11.
- Vignale, Federico A.; Lencina, Agustina I.; Stepanenko, Tatiana M.; Soria, Mariana N.; Saona, Luis A.; Kurth, Daniel; Guzmán, Daniel; Foster, Jamie S.; Poiré, Daniel G.; Villafañe, Patricio G.; Albarracín, Virginia H.; Contreras, Manuel; Farías, María E. (January 2022). "Lithifying and Non-Lithifying Microbial Ecosystems in the Wetlands and Salt Flats of the Central Andes". Microbial Ecology. 83 (1): 1–17. Bibcode:2022MicEc..83....1V. doi:10.1007/s00248-021-01725-8. hdl:11336/148472. PMID 33730193. S2CID 232305171.
- Vignoni, Paula A.; Jurikova, Hana; Schröder, Birgit; Tjallingii, Rik; Córdoba, Francisco E.; Lecomte, Karina L.; Pinkerneil, Sylvia; Grudzinska, Ieva; Schleicher, Anja M.; Viotto, Sofía A.; Santamans, Carla D.; Rae, James W.B.; Brauer, Achim (February 2024). "On the origin and processes controlling the elemental and isotopic composition of carbonates in hypersaline Andean lakes". Geochimica et Cosmochimica Acta. 366: 65–83. Bibcode:2024GeCoA.366...65V. doi:10.1016/j.gca.2023.11.032. hdl:10023/29245. S2CID 265783082.
- Vitry, Christian (November 2003). "CONTROL TERRITORIAL A TRAVÉS DE PUESTOS DE OBSERVACIÓN Y PEAJE EN EL CAMINO DEL INCA. TRAMO MOROHUASI - INCAHUASI, SALTA-ARGENTINA". Cuadernos de la Facultad de Humanidades y Ciencias Sociales (in Spanish) (20). San Salvador de Jujuy, Argentina: Universidad de Jujuy: 151–172 – via ResearchGate.
- Yizhaq, Hezi (2008). "Aeolian Megaripples: Mathematical Model and Numerical Simulations". Journal of Coastal Research. 24 (6): 1369–1378. doi:10.2112/08A-0012.1. ISSN 0749-0208. JSTOR 40065122. S2CID 56526576.
- Zamora, Diego (4 April 2022). "Arqueología e historia oral de la vida internodal en la Puna catamarqueña (Argentina)". Mundo de Antes (in Spanish). 16 (1 (enero-julio)): 223–252. doi:10.59516/mda.v16.237. ISSN 2362-325X.