Jump to content

Tuna

Page semi-protected
From Wikipedia, the free encyclopedia
(Redirected from Canned tuna)

Tuna
Temporal range: Ypresian-recent , 56.0–0 Ma [1]
Tunas (from top): albacore, Atlantic bluefin, skipjack, yellowfin, bigeye
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Scombriformes
Family: Scombridae
Subfamily: Scombrinae
Tribe: Thunnini
Starks, 1910
Genera

A tuna (pl.: tunas or tuna) is a saltwater fish that belongs to the tribe Thunnini, a subgrouping of the Scombridae (mackerel) family. The Thunnini comprise 17 species across five genera,[2] the sizes of which vary greatly, ranging from the bullet tuna (max length: 50 cm or 1.6 ft, weight: 1.8 kg or 4 lb) up to the Atlantic bluefin tuna (max length: 4.6 m or 15 ft, weight: 684 kg or 1,508 lb), which averages 2 m (6.6 ft) and is believed to live up to 50 years.

Tuna, opah, and mackerel sharks are the only species of fish that can maintain a body temperature higher than that of the surrounding water. An active and agile predator, the tuna has a sleek, streamlined body, and is among the fastest-swimming pelagic fish – the yellowfin tuna, for example, is capable of speeds of up to 75 km/h (47 mph).[3][4] Greatly inflated speeds can be found in early scientific reports and are still widely reported in the popular literature.[4]

Found in warm seas, the tuna is commercially fished extensively as a food fish, and is popular as a bluewater game fish. As a result of overfishing, some tuna species, such as the southern bluefin tuna, are threatened with extinction.[5]

Etymology

The term "tuna" comes from Spanish atún < Andalusian Arabic at-tūn, assimilated from al-tūn التون [Modern Arabic التن] : 'tuna fish' < Middle Latin thunnus.[6] Thunnus is derived from Ancient Greek: θύννος, romanizedthýnnos used for the Atlantic bluefin tuna,[7] that name in turn is ultimately derived from θύνω thýnō, meaning "to rush, dart along".[8][9]

In English, tuna has been referred to as Chicken of the Sea. This name persists today in Japan, where tuna as a food can be called シーチキン (shi-chikin), literally "sea chicken".

Taxonomy

The Thunnini tribe is a monophyletic clade comprising 15 species in five genera:

The cladogram is a tool for visualizing and comparing the evolutionary relationships between taxa, and is read left-to-right as if on a timeline. The following cladogram illustrates the relationship between the tunas and other tribes of the family Scombridae. For example, the cladogram illustrates that the skipjack tunas are more closely related to the true tunas than are the slender tunas (the most primitive of the tunas), and that the next nearest relatives of the tunas are the bonitos of the tribe Sardini.[2]

The Tunas: Thunnini tribe, within the Family Scombridae
family Scombridae 
 subfamily
 subfamily
Scombrinae 
tribe Scombrini 

 Mackerels (two genera)

tribe Scomberomorini 

 Spanish mackerels (three genera)

tribe Sardini 

 Bonitos (four genera)

 tribe Thunnini,
 Tunas 

 Allothunnus, slender tunas

 Auxis, frigate tunas

 Euthynnus, little tunas

 Katsuwonus, skipjack tunas

 Thunnus, true tunas 
 subgenus Thunnus

 bluefin group

 subgenus Neothunnus

 yellowfin group

Cladogram: Tunas are classified into the tribe Thunnini (bottom-center in the above diagram) – one of four tribes in the family Scombridae.[2]

True species

Relative sizes of various tunas, with the Atlantic bluefin tuna (top) at about 8 ft (2.4 m) in this sample

The "true" tunas are those that belong to the genus Thunnus. Until recently, it was thought that there were seven Thunnus species, and that Atlantic bluefin tuna and Pacific bluefin tuna were subspecies of a single species. In 1999, Collette established that based on both molecular and morphological considerations, they are in fact distinct species.[10][11]

The genus Thunnus is further classified into two subgenera: Thunnus (Thunnus) (the bluefin group), and Thunnus (Neothunnus) (the yellowfin group).[12]

Thunnus, the true tunas
Image Common name Scientific name Maximum
length
Common
length
Maximum
weight
Maximum
age
Trophic
level
Source IUCN status
Thunnus (Thunnus) – the bluefin group
Albacore tuna T. alalunga
(Bonnaterre, 1788)
1.4 m
(4.6 ft)
1.0 m
(3.3 ft)
60.3 kg
(133 lb)
9–13 yrs 4.31 [13][14] LC IUCN 3 1.svg Least Concern[14]
Southern bluefin tuna T. maccoyii
(Castelnau, 1872)
2.45 m
(8.0 ft)
1.6 m
(5.2 ft)
260 kg
(570 lb)
20–40 yrs 3.93 [15][5] EN IUCN 3 1.svg Endangered[5]
Bigeye tuna T. obesus
(Lowe, 1839)
2.5 m
(8.2 ft)
1.8 m
(5.9 ft)
210 kg
(460 lb)
5–16 yrs 4.49 [16][17] VU IUCN 3 1.svg Vulnerable[17]
Pacific bluefin tuna T. orientalis
(Temminck & Schlegel, 1844)
3.0 m
(9.8 ft)
2.0 m
(6.6 ft)
450 kg
(990 lb)
15–26 yrs 4.21 [18][19] NT IUCN 3 1.svg Near Threatened[19]
Atlantic bluefin tuna T. thynnus
(Linnaeus, 1758)
4.6 m
(15 ft)
2.0 m
(6.6 ft)
684 kg
(1,508 lb)
35–50 yrs 4.43 [20][21] LC IUCN 3 1.svg Least Concern[21]
Thunnus (Neothunnus) – the yellowfin group
Blackfin tuna T. atlanticus
(Lesson, 1831)
1.1 m
(3.6 ft)
0.7 m
(2.3 ft)
22.4 kg
(49 lb)
4.13 [22] LC IUCN 3 1.svg Least concern[23]
Longtail tuna,
northern bluefin tuna,
tongol tuna
T. tonggol
(Bleeker, 1851)
1.45 m
(4.8 ft)
0.7 m
(2.3 ft)
35.9 kg
(79 lb)
18 years 4.50 [24][25] DD IUCN 3 1.svg Data deficient[25]
Yellowfin tuna T. albacares
(Bonnaterre, 1788)
2.4 m
(7.9 ft)
1.5 m
(4.9 ft)
200 kg
(440 lb)
5–9 yrs 4.34 [26][27] LC IUCN 3 1.svg Least Concern[27]

Other species

The Thunnini tribe also includes seven additional species of tuna across four genera. They are:

Other tuna species
Common name Scientific name Maximum
length
Common
length
Maximum
weight
Maximum
age
Trophic
level
Source IUCN status
Slender tuna Allothunnus fallai
(Serventy, 1948)
1.05 m
(3.4 ft)
0.86 m
(2.8 ft)
13.7 kg
(30 lb)
3.74 [28] LC IUCN 3 1.svg Least concern[29]
Bullet tuna Auxis rochei
(Risso, 1810)
0.5 m
(1.6 ft)
0.35 m
(1.1 ft)
1.8 kg
(4.0 lb)
5 years 4.13 [30][31] LC IUCN 3 1.svg Least concern[31]
Frigate tuna Auxis thazard 
(Lacépède, 1800)
0.65 m
(2.1 ft)
0.35 m
(1.1 ft)
1.7 kg
(3.7 lb)
5 years 4.34 [32] LC IUCN 3 1.svg Least concern[33]
Mackerel tuna,
Kawakawa
Euthynnus affinis
(Cantor, 1849)
1.0 m
(3.3 ft)
0.6 m
(2.0 ft)
13.6 kg
(30 lb)
6 years 4.50 [34][35] LC IUCN 3 1.svg Least concern[35]
Little tunny Euthynnus alletteratus
(Rafinesque, 1810)
1.2 m
(3.9 ft)
0.8 m
(2.6 ft)
16.5 kg
(36 lb)
10 years 4.13 [36] LC IUCN 3 1.svg Least concern[37]
Black skipjack tuna  Euthynnus lineatus
(Kishinouye, 1920)
0.84 m
(2.8 ft)
0.6 m
(2.0 ft)
11.8 kg
(26 lb)
3.83 [38][39] LC IUCN 3 1.svg Least concern[39]
Skipjack tuna Katsuwonus pelamis
(Linnaeus, 1758)
1.1 m
(3.6 ft)
0.8 m
(2.6 ft)
34.5 kg
(76 lb)
6–12 yrs 3.75 [40][41] LC IUCN 3 1.svg Least concern[41]

Biology

Bigeye tuna Thunnus obesus showing finlets and keels. Finlets are found between the last dorsal and/or anal fin and the caudal fin. They are rayless and non-retractable.
Drawing by Dr Tony Ayling.

Description

The tuna is a sleek, elongated and streamlined fish, adapted for speed. It has two closely spaced but separated dorsal fins on its back; The first fin is "depressible" – it can be laid down, flush, in a groove that runs along its back; it is supported by spines.[42] Seven to ten yellow finlets run from the dorsal fins to the tail, which is lunate – curved like a crescent moon – and tapered to pointy tips.[43] A tuna's pelvic fins are located below the base of the pectoral fins. Both dorsal and pelvic fins retract when the fish is swimming fast.[42]

The tuna's body is countershaded to camouflage itself in deeper water when seen from above, its dorsal side is generally a metallic dark blue while the ventral or under side is silvery, often with an iridescent shine.[44][43] The caudal peduncle, to which the tail is attached, is quite thin, with three stabilizing horizontal keels on each side.[43]

Physiology

Thunnus are widely but sparsely distributed throughout the oceans of the world, generally in tropical and temperate waters at latitudes ranging between about 45° north and south of the equator.[45] All tunas are able to maintain the temperature of certain parts of their body above the temperature of ambient seawater. For example, bluefin can maintain a core body temperature of 25–33 °C (77–91 °F), in water as cold as 6 °C (43 °F). Unlike other endothermic creatures such as mammals and birds, tuna do not maintain temperature within a relatively narrow range.[46]

Tunas achieve endothermy by conserving the heat generated through normal metabolism. In all tunas, the heart operates at ambient temperature, as it receives cooled blood, and coronary circulation is directly from the gills.[47] The rete mirabile ("wonderful net"), the intertwining of veins and arteries in the body's periphery, allows nearly all of the metabolic heat from venous blood to be "re-claimed" and transferred to the arterial blood via a counter-current exchange system, thus mitigating the effects of surface cooling.[48] This allows the tuna to elevate the temperatures of the highly-aerobic tissues of the skeletal muscles, eyes and brain,[46][47] which supports faster swimming speeds and reduced energy expenditure, and which enables them to survive in cooler waters over a wider range of ocean environments than those of other fish.[citation needed]

Also unlike most fish, which have white flesh, the muscle tissue of tuna ranges from pink to dark red. The red myotomal muscles derive their color from myoglobin, an oxygen-binding molecule, which tuna express in quantities far higher than most other fish. The oxygen-rich blood further enables energy delivery to their muscles.[46]

For powerful swimming animals like dolphins and tuna, cavitation may be detrimental, because it limits their maximum swimming speed.[49] Even if they have the power to swim faster, dolphins may have to restrict their speed, because collapsing cavitation bubbles on their tail are too painful. Cavitation also slows tuna, but for a different reason. Unlike dolphins, these fish do not feel the bubbles, because they have bony fins without nerve endings. Nevertheless, they cannot swim faster because the cavitation bubbles create a vapor film around their fins that limits their speed. Lesions have been found on tuna that are consistent with cavitation damage.[49]

Fishing

Bar chart that states Thunnus thynnus is the largest tuna, at 458 centimetres (180 in) followed by Thunnus orientalis at 300 centimetres (120 in), Thunnus obsesus at 250 centimetres (98 in), Gymnosarda unicolor at 248 centimetres (98 in), Thunnus maccoyii at 245 centimetres (96 in), Thunnus albacares at 239 centimetres (94 in), Gasterochisma melampus at 164 centimetres (65 in), Thunnus tonggol at 145 centimetres (57 in), Thunnus alalunga at 140 centimetres (55 in), Euthynnus alletteratus at 122 centimetres (48 in), Katsuwonus pelamis at 108 centimetres (43 in), Thunnus atlanticus at 108 centimetres (43 in), Allothunnus fallai at 105 centimetres (41 in), Euthynnus affinis at 100 centimetres (39 in), Auxis thazard thazard at 65 centimetres (26 in),Auxis rochei rochei at 50 centimetres (20 in), and Auxis rochei eudorax at 36.5 centimetres (14.4 in)
Maximum reported sizes of tuna species

Commerce

Tuna is an important commercial fish. The International Seafood Sustainability Foundation (ISSF) compiled a detailed scientific report on the state of global tuna stocks in 2009, which includes regular updates. According to the ISSF, the most important species for commercial and recreational tuna fisheries are yellowfin (Thunnus albacares), bigeye (T. obesus), bluefin (T. thynnus, T. orientalis, and T. macoyii), albacore (T. alalunga), and skipjack (Katsuwonus pelamis).[45]

Based on catches from 2007, the report states:

Between 1940 and the mid-1960s, the annual world catch of the five principal market species of tunas rose from about 300 thousand tons to about 1 million tons, most of it taken by hook and line. With the development of purse-seine nets, now the predominant gear, catches have risen to more than 4 million tons annually during the last few years. Of these catches, about 68 percent are from the Pacific Ocean, 22 percent from the Indian Ocean, and the remaining 10 percent from the Atlantic Ocean and the Mediterranean Sea. Skipjack makes up about 60 percent of the catch, followed by yellowfin (24 percent), bigeye (10 percent), albacore (5 percent), and bluefin the remainder. Purse-seines take about 62 percent of the world production, longline about 14 percent, pole and line about 11 percent, and a variety of other gears the remainder.[45]

The Australian government alleged in 2006 that Japan had illegally overfished southern bluefin by taking 12,000 to 20,000 tonnes per year instead of the agreed upon 6,000 tonnes; the value of such overfishing would be as much as US$2 billion.[50] Such overfishing has severely damaged bluefin stocks.[51] According to the WWF, "Japan's huge appetite for tuna will take the most sought-after stocks to the brink of commercial extinction unless fisheries agree on more rigid quotas".[52] Japan's Fisheries Research Agency counters that Australian and New Zealand tuna fishing companies under-report their total catches of southern bluefin tuna and ignore internationally mandated total allowable catch totals.[53]

In recent years, opening day fish auctions at Tokyo's Tsukiji fish market and Toyosu Market have seen record-setting prices for bluefin tuna, reflecting market demand. In each of 2010, 2011, 2012, 2013 and 2019, new record prices have been set for a single fish – the current record is 333.6 million japanese yen (US$3.1 million) for a 278 kg (613 lb) bluefin, or a unit price of JP¥ 1,200,000/kg (US$5,057/lb). The opening auction price for 2014 plummeted to less than 5% of the previous year's price, which had drawn complaints for climbing "way out of line".[54] A summary of record-setting auctions are shown in the following table (highlighted values indicate new world records):

Record bluefin tuna auctions at Tokyo's Tsukiji fish market and Toyosu Market
(Highlighted field indicates new record price for a single fish)
Year Total
weight
Total sale Unit price Source
(JP ¥) (US $) (¥ / kg) ($ / lb)
2001 202 kg
(445 lb)
¥20.2 million $173,600 ¥100,000 / kg $386 / lb [55]
2010 232 kg
(511 lb)
¥16.28 million $175,000 ¥70,172 / kg $343 / lb [56]
2011 342 kg
(754 lb)
¥32.49 million $396,000 ¥95,000 / kg $528 / lb [55]
2012 269 kg
(593 lb)
¥56.49 million $736,000 ¥210,000 / kg $1,247 / lb [57]
2013 221 kg
(487 lb)
¥155.4 million $1.76 million ¥703,167 / kg $3,603 / lb [58]
2019 278 kg
(613 lb)
¥333.6 million $3.1 million ¥1,200,000 / kg $5,057 / lb [59]

In November 2011, a different record was set when a fisherman in Massachusetts caught an 881 lb (400 kg) tuna. It was captured inadvertently using a dragnet. Due to the laws and restrictions on tuna fishing in the United States, federal authorities impounded the fish because it was not caught with a rod and reel. Because of the tuna's deteriorated condition as a result of the trawl net, the fish sold for just under $5,000.[60]

Methods

External videos
video icon Tuna pole and line fishing BBC Two

Besides for edible purposes, many tuna species are caught frequently as game, often for recreation or for contests in which money is awarded based on weight. Larger specimens are notorious for putting up a fight while hooked, and have been known to injure people who try to catch them, as well as damage their equipment.

Association with whaling

In 2005, Nauru, defending its vote from Australian criticism at that year's meeting of the International Whaling Commission, argued that some whale species have the potential to devastate Nauru's tuna stocks, and that Nauru's food security and economy relies heavily on fishing.[62] Despite this, Nauru does not permit whaling in its own waters and does not allow other fishing vessels to take or intentionally interact with marine mammals in its Exclusive Economic Zone. In 2010 and 2011, Nauru supported Australian proposals[63] for a western Pacific-wide ban on tuna purse-seining in the vicinity of marine mammals – a measure which was agreed by the Western and Central Pacific Fisheries Commission at its eighth meeting in March 2012.

Association with dolphins

Dolphins swim beside several tuna species. These include yellowfin tuna in the eastern Pacific Ocean, but not albacore. Tuna schools are believed to associate themselves with dolphins for protection against sharks, which are tuna predators.[64]

Commercial fishing vessels used to exploit this association by searching for dolphin pods. Vessels would encircle the pod with nets to catch the tuna beneath.[65] The nets were prone to entangling dolphins, injuring or killing them. Public outcry and new government regulations, which are now monitored by NOAA have led to more dolphin-friendly methods, now generally involving lines rather than nets. There are neither universal independent inspection programs nor verification of dolphin safety, so these protections are not absolute. According to Consumers Union, the resulting lack of accountability means claims of tuna that is "dolphin safe" should be given little credence.

Fishery practices have changed to be dolphin friendly, which has caused greater bycatch including sharks, turtles and other oceanic fish. Fishermen no longer follow dolphins, but concentrate their fisheries around floating objects such as fish aggregation devices, also known as FADs, which attract large populations of other organisms. Measures taken thus far to satisfy the public demand to protect dolphins can be potentially damaging to other species as well.[66]

Aquaculture

Increasing quantities of high-grade tuna caught at sea are reared in net pens and fed bait fish. In Australia, former fishermen raise southern bluefin tuna (Thunnus maccoyii) and another bluefin species.[61] Farming its close relative, the Atlantic bluefin tuna, Thunnus thynnus, is beginning in the Mediterranean, North America and Japan. Hawaiʻi approved permits for the first U.S. offshore farming of bigeye tuna in water 1,300 feet (400 m) deep in 2009.[67]

Japan is the biggest tuna consuming nation and is also the leader in tuna farming research.[68] Japan first successfully farm-hatched and raised bluefin tuna in 1979. In 2002, it succeeded in completing the reproduction cycle and in 2007, completed a third generation.[69][70][71] The farm breed is known as Kindai tuna. Kindai is the contraction of Kinki University in Japanese (Kinki daigaku).[72] In 2009, Clean Seas, an Australian company which has been receiving assistance from Kinki University[73][74][75] managed to breed southern bluefin tuna in captivity and was awarded the second place in World's Best Invention of 2009 by Time magazine.[76][77]

Food

A grilled tuna steak

Fresh and frozen

The fresh or frozen flesh of tuna is widely regarded as a delicacy in most areas where it is shipped, being prepared in a variety of ways. When served as a steak, the meat of most species is known for its thickness and tough texture. In the U.K., supermarkets began flying in fresh tuna steaks in the late 1990s, which helped to increase the popularity of using fresh tuna in cooking; by 2009, celebrity chefs regularly featured fresh tuna in salads, wraps, and char-grilled dishes.[78]

Served raw

Various species of tuna are often served raw in Japanese cuisine as sushi or sashimi.[78]

Commercial sashimi tuna may have their coloration fixated by pumping carbon monoxide (CO) into bags containing the tuna, and holding it at 4 °C. For a 2-inch tuna steak, this requires 24 hours. The fish is then vacuum sealed and frozen. In Japan, color fixation using CO is prohibited.[79]

Canned

Small cans on grocery shelves
Canned tuna on sale at a supermarket

Tuna is canned in edible oils, in brine, in water, and in various sauces. Tuna may be processed and labeled as "solid", "chunked" ("chunk") or "flaked". When tuna is canned and packaged for sale, the product is sometimes called tuna fish (U.S.), a calque (loan translation) from the German Thunfisch. Canned tuna is sometimes used as food for pets, especially cats.

Australia

Canned tuna was first produced in Australia in 1903 and quickly became popular.[80]

In the early 1980s canned tuna in Australia was most likely southern bluefin, as of 2003 it was usually yellowfin, skipjack, or tongol (labelled "northern bluefin" or "longtail").[80]

Australian standards once required cans of tuna to contain at least 51% tuna, but those regulations were dropped in 2003.[81][82] The remaining weight is usually oil or water.

United States

The product became more plentiful in the United States in the late 1940s. In 1950, 8,500,000 pounds of canned tuna were produced, and the U.S. Department of Agriculture classified it as a "plentiful food".[83]

In the United States, 52% of canned tuna is used for sandwiches; 22% for tuna salads; and 15% for tuna casseroles and dried, prepackaged meal kits, such as General Mills's Tuna Helper line.[84] Other canned tuna dishes include tuna melts (a type of sandwich where the tuna is mixed with mayonnaise and served on bread with cheese melted on top); salade niçoise (a salad made of tuna, olives, green beans, potatoes, hard-boiled eggs and anchovy dressing); and tuna burgers (served on buns).

In the United States, the Food and Drug Administration (FDA) regulates canned tuna (see part c).[85]

Precooked

As tunas are often caught far from where they are processed, poor interim conservation can lead to spoilage. Tuna is typically gutted by hand, and later precooked for prescribed times of 45 minutes to three hours. The fish are then cleaned and filleted, canned (and sealed), with the dark lateral blood meat often separately canned for pet food (cat or dog). The sealed can is then heated under pressure (called "retort cooking") for 2–4 hours.[86] This process kills any bacteria, but retains the histamine that may have been produced by those bacteria, and so may still taste spoiled. The international standard sets the maximum histamine level at 200 milligrams per kilogram. An Australian study of 53 varieties of unflavored canned tuna found none to exceed the safe histamine level, although some had "off" flavors.[80]

Light and white

In some markets, depending upon the color of the flesh of the tuna species, the can is marked as "light" or "white" meat, with "light" meaning a greyish pink color and "white" meaning a light pink color. In the United States, only albacore can legally be sold in canned form as "white meat tuna";[87] in other countries, yellowfin is also acceptable.

Ventresca tuna

Ventresca tuna (from ventre, the Italian word for belly),[88] is a luxury canned tuna,[89] from the fatty bluefin tuna belly, also used in sushi as toro.[90][91]

Nutrition

Tuna, light, canned in oil, drained solids
Nutritional value per 100 g (3.5 oz)
Energy830 kJ (200 kcal)
0 g
8 g
29 g
Vitamins and minerals
VitaminsQuantity
%DV
Vitamin A equiv.
3%
23 μg
Choline
5%
29 mg
Vitamin D
34%
269 IU
MineralsQuantity
%DV
Calcium
1%
13 mg
Iron
8%
1.4 mg
Magnesium
7%
31 mg
Phosphorus
25%
311 mg
Potassium
7%
207 mg
Zinc
8%
0.9 mg
Other constituentsQuantity
Water60 g
Percentages estimated using US recommendations for adults,[92] except for potassium, which is estimated based on expert recommendation from the National Academies.[93]

Canned light tuna in oil is 29% protein, 8% fat, 60% water, and contains no carbohydrates, while providing 200 calories in a 100 gram reference amount (table). It is a rich source (20% or more of the Daily Value, DV) of phosphorus (44% DV) and vitamin D (45% DV), and a moderate source of iron (11% DV).

Mercury and health

Mercury content in tuna can vary widely. Among those calling for improved warnings about mercury in tuna is the American Medical Association, which adopted a policy that physicians should help make their patients more aware of the potential risks.[94] A study published in 2008 found that mercury distribution in the meat of farmed tuna is inversely related to the lipid content, suggesting that higher lipid concentration within edible tissues of tuna raised in captivity might, other factors remaining equal, have a diluting effect on mercury content.[95] Mackerel tuna is one species of tuna that is lower in mercury concentration than skipjack or yellowfin,[96] but this species is known as "black meat" or "dark meat" tuna, which is a lower grade for canning because of the color, unfavorable flavor, and poor yield.[97]

In March 2004, the United States FDA issued guidelines recommending that pregnant women, nursing mothers, and children limit their intake of tuna and other predatory fish.[98] The Environmental Protection Agency provides guidelines on how much canned tuna is safe to eat. Roughly speaking, the guidelines recommend one 6-ounce (170 g) can of light tuna per week for individuals weighing less than 110 pounds (50 kg), and two cans per week for those who weigh more.[99] In 2007, it was reported that some canned light tuna such as yellowfin tuna[100] is significantly higher in mercury than skipjack, and caused Consumers Union and other activist groups to advise pregnant women to refrain from consuming canned tuna.[101] In 2009, a California appeals court upheld a ruling that canned tuna does not need warning labels as the methylmercury is naturally occurring.[102]

A January 2008 report revealed potentially dangerous levels of mercury in certain varieties of sushi tuna, reporting levels "so high that the Food and Drug Administration could take legal action to remove the fish from the market."[103]

Management and conservation

Life cycle

The main tuna fishery management bodies are the Western and Central Pacific Fisheries Commission, the Inter-American Tropical Tuna Commission, the Indian Ocean Tuna Commission, the International Commission for the Conservation of Atlantic Tunas, and the Commission for the Conservation of Southern Bluefin Tuna.[104] The five gathered for the first time in Kobe, Japan in January 2007. Environmental organizations made submissions[105] on risks to fisheries and species. The meeting concluded with an action plan drafted by some 60 countries or areas. Concrete steps include issuing certificates of origin to prevent illegal fishing and greater transparency in the setting of regional fishing quotas. The delegates were scheduled to meet at another joint meeting in January or February 2009 in Europe.[106]

In 2010, Greenpeace International added the albacore, bigeye tuna, Pacific bluefin tuna, Atlantic bluefin tuna, southern bluefin tuna, and yellowfin tuna to its seafood red list, which are fish "commonly sold in supermarkets around the world, and which have a very high risk of being sourced from unsustainable fisheries."[107][108]

Bluefin tuna have been widely accepted as being severely overfished, with some stocks at risk of collapse.[109][110] According to the International Seafood Sustainability Foundation (a global, nonprofit partnership between the tuna industry, scientists, and the World Wide Fund for Nature), Indian Ocean yellowfin tuna, Pacific Ocean (eastern and western) bigeye tuna, and North Atlantic albacore tuna are all overfished. In April 2009, no stock of skipjack tuna (which makes up roughly 60% of all tuna fished worldwide) was considered to be overfished.[111]

The BBC documentary South Pacific, which first aired in May 2009, stated that, should fishing in the Pacific continue at its current rate, populations of all tuna species could collapse within five years. It highlighted huge Japanese and European tuna fishing vessels, sent to the South Pacific international waters after overfishing their own fish stocks to the point of collapse.[112]

A 2010 tuna fishery assessment report, released in January 2012 by the Secretariat of the Pacific Community, supported this finding, recommending that all tuna fishing should be reduced or limited to current levels and that limits on skipjack fishing be considered.[113]

Research[114] indicates that increasing ocean temperatures are taking a toll on the tuna in the Indian Ocean, where rapid warming of the ocean has resulted in a reduction of marine phytoplankton. The bigeye tuna catch rates have also declined abruptly during the past half century, mostly due to increased industrial fisheries, with the ocean warming adding further stress to the fish species.[114]

See also

References

  1. ^ "Tribe Thunnini Starks 1910". The Paleobiology Database. Archived from the original on 21 January 2019. Retrieved 20 January 2019.
  2. ^ a b c Graham, Jeffrey B.; Dickson, Kathryn A. (2004). "Tuna Comparative Physiology". The Journal of Experimental Biology. 207 (23): 4015–4024. doi:10.1242/jeb.01267. PMID 15498947.
  3. ^ Block, Barbara A.; Booth, David; Carey, Francis G. (1992). "Direct measurement of swimming speeds and depth of blue marlin". Journal of Experimental Biology. 166: 278. doi:10.1242/jeb.166.1.267.
  4. ^ a b Svendsen, Morten B. S.; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M.; Rodriguez-Pinto, Ivan; Wilson, Alexander D. M.; Kurvers, Ralf H. J. M.; Viblanc, Paul E.; Finger, Jean S.; Steffensen, John F. (October 2016). "Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited". Biology Open. 5 (10): 1415–1419. doi:10.1242/bio.019919. PMC 5087677. PMID 27543056.
  5. ^ a b c Collette, B.; et al. (2021). "Thunnus maccoyii". IUCN Red List of Threatened Species. 2021. Retrieved 29 March 2022.
  6. ^ "tuna". American Heritage Dictionary. Houghton Mifflin Harcourt Publishing Company. 2015. Archived from the original on 24 May 2015. Retrieved 24 May 2015.
  7. ^ Lewis, Charlton T.; Short, Charles (1879). "thunnus". A Latin Dictionary. Perseus Digital Library.
  8. ^ θύννος in Liddell, Henry George; Scott, Robert (1940) A Greek–English Lexicon, revised and augmented throughout by Jones, Sir Henry Stuart, with the assistance of McKenzie, Roderick. Oxford: Clarendon Press. In the Perseus Digital Library, Tufts University.
  9. ^ θύνω in Liddell and Scott.
  10. ^ Collette, B.B. (1999). "Mackerels, molecules, and morphology" (PDF). In Séret, B.; Sire, J.Y. (eds.). Proceedings. 5th Indo-Pacific Fish Conference: Nouméa, New Caledonia, 3–8 November 1997. Paris: Société Française d'Ichtyologie [u.a.] pp. 149–164. ISBN 978-2-9507330-5-4.
  11. ^ Tanaka, Y.; Satoh, K.; Iwahashi, M.; Yamada, H. (2006). "Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean". Marine Ecology Progress Series. 319: 225–235. Bibcode:2006MEPS..319..225T. doi:10.3354/meps319225. INIST 18108521.
  12. ^ Ueda, Hiroshi (2018). "Migration and Navigation in Fish". Encyclopedia of Reproduction. pp. 84–89. doi:10.1016/B978-0-12-809633-8.20540-2. ISBN 978-0-12-815145-7.
  13. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus alalunga". FishBase. January 2012 version.
  14. ^ a b Collette, B.; et al. (2021). "Thunnus alalunga". IUCN Red List of Threatened Species. 2021. Retrieved 29 March 2022.
  15. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus maccoyii". FishBase. January 2012 version.
  16. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus obesus". FishBase. January 2012 version.
  17. ^ a b Collette, B.; et al. (2021). "Thunnus obesus". IUCN Red List of Threatened Species. 2021. Retrieved 29 March 2022.
  18. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus orientalis". FishBase. January 2012 version.
  19. ^ a b Collette, B.; et al. (2021). "Thunnus orientalis". IUCN Red List of Threatened Species. 2021. Retrieved 29 March 2022.
  20. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus thynnus". FishBase. January 2012 version.
  21. ^ a b Collette, B.; et al. (2021). "Thunnus thynnus". IUCN Red List of Threatened Species. 2021. Retrieved 9 January 2015.
  22. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus atlanticus". FishBase. January 2012 version.
  23. ^ Collette, B.; et al. (2010). "Thunnus atlanticus". IUCN Red List of Threatened Species. 2010. Retrieved 29 March 2022.
  24. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus tonggol". FishBase. January 2012 version.
  25. ^ a b Collette, B.; et al. (2009). "Thunnus tonggol". IUCN Red List of Threatened Species. 2009. Retrieved 29 March 2022.
  26. ^ Froese, Rainer; Pauly, Daniel (eds.). "Thunnus albacares". FishBase. January 2012 version.
  27. ^ a b Collette, B.; et al. (2021). "Thunnus albacares". IUCN Red List of Threatened Species. 2021. Retrieved 29 March 2022.
  28. ^ Froese, Rainer; Pauly, Daniel (eds.). "Allothunnus fallai". FishBase. January 2012 version.
  29. ^ Collette, B.; Amorim, A.F.; Boustany, A.; Carpenter, K.E.; de Oliveira Leite Jr.; N.; Di Natale, A.; Fox, W.; Fredou, F.L.; Graves, J.; Viera Hazin, F.H.; Juan Jorda, M.; Minte Vera, C.; Miyabe, N.; Nelson, R.; Oxenford, H.; Sun, C.; Teixeira Lessa, R.P.; Pires Ferreira Travassos, P.E.; Uozumi, Y. (2011). "Allothunnus fallai". IUCN Red List of Threatened Species. 2011: e.T170349A6761139. doi:10.2305/IUCN.UK.2011-2.RLTS.T170349A6761139.en. Retrieved 12 November 2021.
  30. ^ Froese, Rainer; Pauly, Daniel (eds.). "Auxis rochei". FishBase. January 2012 version.
  31. ^ a b Collette, B.; Acero, A.; Amorim, A.F.; Boustany, A.; Canales Ramirez, C.; Cardenas, G.; Carpenter, K.E.; de Oliveira Leite Jr.; N.; Di Natale, A.; Fox, W.; Fredou, F.L.; Graves, J.; Guzman-Mora, A.; Viera Hazin, F.H.; Juan Jorda, M.; Kada, O.; Minte Vera, C.; Miyabe, N.; Montano Cruz, R.; Nelson, R.; Oxenford, H.; Salas, E.; Schaefer, K.; Serra, R.; Sun, C.; Teixeira Lessa, R.P.; Pires Ferreira Travassos, P.E.; Uozumi, Y.; Yanez, E. (2011). "Auxis rochei". IUCN Red List of Threatened Species. 2011: e.T170355A6765188. doi:10.2305/IUCN.UK.2011-2.RLTS.T170355A6765188.en. Retrieved 12 November 2021.
  32. ^ Froese, Rainer; Pauly, Daniel (eds.). "Auxis thazard". FishBase. January 2012 version.
  33. ^ Collette, B.; Acero, A.; Amorim, A.F.; Boustany, A.; Canales Ramirez, C.; Cardenas, G.; Carpenter, K.E.; de Oliveira Leite Jr.; N.; Di Natale, A.; Fox, W.; Fredou, F.L.; Graves, J.; Guzman-Mora, A.; Viera Hazin, F.H.; Juan Jorda, M.; Kada, O.; Minte Vera, C.; Miyabe, N.; Montano Cruz, R.; Nelson, R.; Oxenford, H.; Salas, E.; Schaefer, K.; Serra, R.; Sun, C.; Teixeira Lessa, R.P.; Pires Ferreira Travassos, P.E.; Uozumi, Y.; Yanez, E. (2011). "Auxis thazard". IUCN Red List of Threatened Species. 2011: e.T170344A6757270. doi:10.2305/IUCN.UK.2011-2.RLTS.T170344A6757270.en. Retrieved 12 November 2021.
  34. ^ Froese, Rainer; Pauly, Daniel (eds.). "Euthynnus affinis". FishBase. January 2012 version.
  35. ^ a b Collette, B.; Chang, S.-K.; Fox, W.; Juan Jorda, M.; Miyabe, N.; Nelson, R.; Uozumi, Y. (2011). "Euthynnus affinis". IUCN Red List of Threatened Species. 2011: e.T170336A6753804. doi:10.2305/IUCN.UK.2011-2.RLTS.T170336A6753804.en. Retrieved 12 November 2021.
  36. ^ Froese, Rainer; Pauly, Daniel (eds.). "Euthynnus alletteratus". FishBase. January 2012 version.
  37. ^ Collette, B.; Amorim, A.F.; Boustany, A.; Carpenter, K.E.; de Oliveira Leite Jr.; N.; Di Natale, A.; Fox, W.; Fredou, F.L.; Graves, J.; Viera Hazin, F.H.; Juan Jorda, M.; Kada, O.; Minte Vera, C.; Miyabe, N.; Nelson, R.; Oxenford, H.; Teixeira Lessa, R.P.; Pires Ferreira Travassos, P.E. (2011). "Euthynnus alletteratus". IUCN Red List of Threatened Species. 2011: e.T170345A6759394. doi:10.2305/IUCN.UK.2011-2.RLTS.T170345A6759394.en. Retrieved 12 November 2021.
  38. ^ Froese, Rainer; Pauly, Daniel (eds.). "Euthynnus lineatus". FishBase. January 2012 version.
  39. ^ a b Collette, B.; Acero, A.; Canales Ramirez, C.; Cardenas, G.; Carpenter, K.E.; Di Natale, A.; Guzman-Mora, A.; Montano Cruz, R.; Nelson, R.; Schaefer, K.; Serra, R.; Yanez, E. (2011). "Euthynnus lineatus". IUCN Red List of Threatened Species. 2011: e.T170320A6747016. doi:10.2305/IUCN.UK.2011-2.RLTS.T170320A6747016.en. Retrieved 12 November 2021.
  40. ^ Froese, Rainer; Pauly, Daniel (eds.). "Katsuwonus pelamis". FishBase. January 2012 version.
  41. ^ a b Collette, B.B.; Boustany, A.; Fox, W.; Graves, J.; Juan Jorda, M.; Restrepo, V. (2021). "Katsuwonus pelamis". IUCN Red List of Threatened Species. 2021: e.T170310A46644566. doi:10.2305/IUCN.UK.2021-2.RLTS.T170310A46644566.en. Retrieved 12 November 2021.
  42. ^ a b Biological characteristics of tuna. Fisheries and Aquaculture Department, Food and Agriculture Organization. n.d. Retrieved 17 December 2022.
  43. ^ a b c Gibbs, E. "Fact Sheet: Tuna #P1412". Rhode Island Sea Grant. Archived from the original on 12 July 2012. Retrieved 20 September 2012.
  44. ^ Argo, Emily (21 April 2017). "Countershading". Fishionary. American Fisheries Society. Retrieved 17 December 2022.
  45. ^ a b c "Status of the World Fisheries for Tuna: Section A-1 – Introduction" (PDF). International Seafood Sustainability Foundation. 15 April 2009. Archived from the original (PDF) on 27 March 2010. Retrieved 10 November 2009.
  46. ^ a b c Sepulveda, C.A.; Dickson, K.A.; Bernal, D.; Graham, J.B. (1 July 2008). "Elevated red myotomal muscle temperatures in the most basal tuna species, Allothunnus fallai". Journal of Fish Biology. 73 (1): 241–249. Bibcode:2008JFBio..73..241S. doi:10.1111/j.1095-8649.2008.01931.x.
  47. ^ a b Landeira-Fernandez, A.M.; Morrissette, J.M.; Blank, J.M.; Block, B.A. (16 October 2003). "Temperature dependence of the Ca2+-ATPase (SERCA2) in the ventricles of tuna and mackerel". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 286 (2): R398–R404. doi:10.1152/ajpregu.00392.2003. PMID 14604842.
  48. ^ Cech, J.J.; Laurs, R.M.; Graham, J.B. (1984). "Temperature-induced changes in blood gas equilibria in the albacore, Thunnus alalunga, a warm-bodied tuna". Journal of Experimental Biology. 109 (1): 21–34. doi:10.1242/jeb.109.1.21. Oxygenated blood that has just reached thermal equilibrium with ambient sea water in the gills enters the rete on the arterial side, while warmed, deoxygenated, and carbon dioxide-laden blood enters on the venous end. In the rete, countercurrent flow and the high surface area contact between the two blood supplies facilitate the transfer of nearly all of the metabolic heat in the venous blood to arterial blood, thus conserving muscle temperature. After exiting the rete, arterial blood continues to the red muscle capillary beds, and cooled venous blood flows to the gills where carbon dioxide is excreted and oxygen is loaded.
  49. ^ a b Iosilevskii, G; Weihs, D (6 March 2008). "Speed limits on swimming of fishes and cetaceans". Journal of the Royal Society Interface. 5 (20): 329–338. doi:10.1098/rsif.2007.1073. PMC 2607394. PMID 17580289. Lacking pain receptors on their caudal fins, scombrids may temporarily cross the cavitation limit, and cavitation-induced damage has been observed (Kishinouye 1923); on the other hand, delphinids probably cannot cross it without pain (Lang 1966)
  50. ^ Bradford, Gillian (16 October 2006). "Bluefin Tuna Plundering Catches Up With Japan". ABC News. Retrieved 11 August 2013.
  51. ^ Eilperin, Juliet (29 November 2009). "Global approach now favored for marine conservation". Washington Post. Retrieved 11 August 2013.
  52. ^ McCurry, Justin (22 January 2007). "Japan warned tuna stocks face extinction". The Guardian. London. Retrieved 2 April 2008.
  53. ^ Wright, Hillel (9 January 2011). "Are Japan's fish lovers eating tuna to extinction?". Japan Times. p. 7. Retrieved 11 August 2013.
  54. ^ "Price of tuna nosedives at famous Tokyo auction despite dwindling stocks". The Toronto Star. 5 January 2014. Retrieved 8 February 2014.
  55. ^ a b "Fish story: Big tuna sells for record $396,000". NBCNews.com. 5 January 2011. Retrieved 19 September 2012.
  56. ^ Buerk, Roland (5 January 2010). "Tuna hits highest price in nine years at Tokyo auction". BBC News. Retrieved 19 September 2012.
  57. ^ "A single fish sells for nearly three-quarters of a million dollars". NBCNews.com. 5 January 2012. Retrieved 19 September 2012.
  58. ^ "A bluefin tuna sells for record $1.76M in Tokyo". usatoday.com. 4 January 2013. Retrieved 4 January 2013.
  59. ^ "Tuna sells for record $3 million in auction at Tokyo's new fish market". Reuters. 5 January 2019. Retrieved 4 September 2019.
  60. ^ "Man catches 881-pound tuna, seized by feds | The Sideshow – Yahoo! News". News.yahoo.com. 15 November 2011. Retrieved 16 June 2012.
  61. ^ a b Whyte, P.; Doolette, D. J.; Gorman, D. F.; Craig, D. S. (2001). "Positive Reform of Tuna Farm Diving in South Australia in Response to Government Intervention". Occupational and Environmental Medicine. 58 (2): 124–128. doi:10.1136/oem.58.2.124. JSTOR 27731455. PMC 1740091. PMID 11160991.
  62. ^ Dorney, Sean (28 June 2005). "Nauru defends whaling vote. 28/06/2005. ABC News Online". Abc.net.au. Retrieved 12 April 2012.
  63. ^ Western and Central Pacific Fisheries Commission. "Australia Proposals to Address the Impact of Purse Seine Fishing Activity on Cetaceans" (PDF). WCPFC. Archived from the original (PDF) on 1 November 2012. Retrieved 11 April 2012.
  64. ^ "ENSENADA: El Puerto del Atun". Journalism.berkeley.edu. Archived from the original on 24 May 2010. Retrieved 22 September 2010.
  65. ^ "Dolphin-safe tuna". Whale and Dolphin Conservation. Archived from the original on 27 September 2013.
  66. ^ "The ecological disaster that is dolphin safe tuna". Southern Fried Science. 16 February 2009.
  67. ^ McAvoy, Audrey (24 October 2009). "Hawaii regulators approve first US tuna farm". Associated Press. Retrieved 11 August 2013.
  68. ^ Susannah F. Locke (17 March 2008). "Breeding the Overfished Bluefin Tuna". LiveScience. Retrieved 13 May 2013.
  69. ^ "The holy grail of fish breeding".
  70. ^ "Cultivation, seedling production, and selective breeding of bluefin tuna and other fish at the Kinki University Fisheries Laboratory". Flku.jp. Retrieved 22 September 2010.
  71. ^ Jung, Carolyn (21 May 2008). "The rarest tuna of all – Japan's farmed Kindai". The San Francisco Chronicle.
  72. ^ Raisfeld, Robin (4 May 2008). "Can a Farmed Bluefin Tuna Save the Planet? – New York Magazine". Nymag.com. Retrieved 16 June 2012.
  73. ^ "FNArena". FNArena. 15 May 2009. Retrieved 22 September 2010.
  74. ^ "Stateline South Australia". Abc.net.au. Archived from the original on 13 November 2012. Retrieved 22 September 2010.
  75. ^ Austin, Nigel (23 September 2008). "Clean Seas teams up with Japan's Kinki Uni for tuna research". The Advertiser. Archived from the original on 2 December 2012. Retrieved 24 November 2009.
  76. ^ "The Tank-Bred Tuna". The 50 Best Inventions of 2009. Time. 12 November 2009. Archived from the original on 15 November 2009. Retrieved 21 January 2013.
  77. ^ "Aussies Win 'Best Invention' Award". ThinkingAustralia.com. Archived from the original on 3 April 2013. Retrieved 21 January 2013.
  78. ^ a b Hickman, Martin (9 June 2009). "How Tuna Conquered the World". www.independent.co.uk. The Independent. Archived from the original on 31 January 2019. Retrieved 30 January 2019.
  79. ^ Hui, Y. H.; et al. (2004). Handbook of Frozen Foods. CRC Press. p. 328. ISBN 0203022009.
  80. ^ a b c Choice: Jan/Feb 2004.
  81. ^ Choice, August 2003.
  82. ^ Test: Canned tuna (archived) Canned or conned? Archived 1 August 2008 at the Wayback Machine
  83. ^ Casa-Emellosthe, Ruth P. (1 March 1951). "News of Food: Tuna Provides Tempting Dishes; Canned Fish Plentiful Now and a Good Buy for Budget-Minded". New York Times. p. 30. Retrieved 17 April 2021.
  84. ^ "Tuna". Modern Marvels, 4 February 2010.
  85. ^ "CFR – Code of Federal Regulations Title 21". Accessdata.fda.gov. Retrieved 22 September 2010.
  86. ^ "The tuna processing industry". U.S. Department of Labor. Archived from the original on 12 August 2013. Retrieved 11 August 2013.
  87. ^ Ellis, Richard. Tuna: A Love Story. New York: Random House, 2009, p. 119. ISBN 0-307-38710-0
  88. ^ Rosengarten, David (31 July 2012). "Name That Tuna! The Little-Known, Sexy Varieties that Are Vastly Superior to the Supermarket Cans". Wine4Food. Archived from the original on 14 May 2021. Retrieved 14 May 2021. What is ventresca? The name comes from the Italian word for belly, which is "ventre." Yup, you guessed it, ventresca is canned tuna made from the tuna's belly, from the sexy, velvety hunk known in sushi bars as "toro." Happily, there are a good many ventresca brands in the U.S. right now from Italy and Spain. (Originally Published: ROSENGARTEN REPORT, April 2003.)
  89. ^ "Luxury Canned Tuna". www.splendidtable.org. 18 November 2010. Archived from the original on 14 May 2021. Retrieved 14 May 2021. Ventresca Tuna: This tuna comes from the belly of the fish, that velvety chunk known in sushi bars as toro. It has deep, buttery, complex flavors and a creamy texture. This one stands alone. The less you do to it the better. Be prepared to pay dearly for this unabashed luxury
  90. ^ Fraioli, James O.; Sato, Chef Kaz (2008). The Complete Idiot's Guide to Sushi and Sashimi. New York, NY: Alpha Books. ISBN 978-1-59257-782-8.
  91. ^ "Sushi Menu". Sushi Encyclopedia. 2007. Archived from the original on 20 May 2017. Retrieved 12 February 2016. The sushi menu consists of basic Edo style sushi and they are grouped in their styles.
  92. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". FDA. Archived from the original on 27 March 2024. Retrieved 28 March 2024.
  93. ^ National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium (2019). Oria, Maria; Harrison, Meghan; Stallings, Virginia A. (eds.). Dietary Reference Intakes for Sodium and Potassium. The National Academies Collection: Reports funded by National Institutes of Health. Washington, DC: National Academies Press (US). ISBN 978-0-309-48834-1. PMID 30844154. Archived from the original on 9 May 2024. Retrieved 21 June 2024.
  94. ^ Roe, Sam; Hawthorne, Michael (13 December 2005). "How safe is tuna?". Chicago Tribune. Archived from the original on 26 November 2009.
  95. ^ Balshaws, S.; Edwards, J.W.; Ross, K.E.; Daughtry, B.J. (December 2008). "Mercury distribution in the muscular tissue of farmed southern bluefin tuna (Thunnus maccoyii) is inversely related to the lipid content of tissues". Food Chemistry. 111 (3): 616–621. doi:10.1016/j.foodchem.2008.04.041.
  96. ^ Sompongchaiyakul, Penjai; Hantow, Jinnathum; Sornkrut, Somjet; Sumontha, Montri; Jayasinghe, Rankiri P.P. Krishantha (September 2008). "An assessment of mercury concentration in fish tissues caught from three compartments of the Bay of Bengal" (PDF). The Ecosystem-Based Management Fishery in the Bay of Bengal. Department of Fisheries, (DOF); Ministry of Agriculture and Cooperatives, Thailand. pp. 221–232.
  97. ^ Balachandran KK, Vijayan PK, Joseph J (1982). "Improving the acceptability of canned Mackerel tuna (Euthynnus affinis)". Fish Technology. 19 (1): 59–60.
  98. ^ "What You Need to Know About Mercury in Fish and Shellfish". March 2004. Archived from the original on 19 May 2007. Retrieved 19 May 2007.
  99. ^ "PROTECT YOURSELF AND YOUR FAMILY: Eating Tuna Safely". 2 April 2012. Archived from the original on 17 June 2012. Retrieved 2 April 2012.
  100. ^ "FDA to check tuna". Chicago Tribune. Retrieved 21 June 2007.
  101. ^ "Mercury in tuna". June 2006. Archived from the original on 10 April 2007. Retrieved 19 May 2007.
  102. ^ People ex rel. Brown v. Tri-Union Seafoods, LLC, 171 Cal.App.4th 1549 (Cal. App. Ct. 2009).
  103. ^ Burros, Marian (23 January 2008). "High Mercury Levels Are Found in Tuna Sushi". New York Times. Retrieved 11 September 2009.
  104. ^ "WWF demands tuna monitoring system". The Age. Melbourne. 19 January 2007. Retrieved 19 May 2008.
  105. ^ "Briefing: Joint Tuna RFMO Meeting, Kobe 2007". 23 January 2007. Archived from the original on 23 March 2008. Retrieved 19 May 2008.
  106. ^ "Conference approves global plan to save tuna stocks". Australian Broadcasting Corporation. 26 January 2007. Archived from the original on 11 January 2008. Retrieved 10 May 2008.
  107. ^ "Greenpeace International Seafood Red list". Greenpeace.org. 17 March 2003. Archived from the original on 20 August 2010. Retrieved 22 September 2010.
  108. ^ Greenberg, Paul (21 June 2010). "Tuna's End". The New York Times.
  109. ^ Black, Richard (17 October 2007). "Last rites for a marine marvel?". BBC News. Retrieved 17 October 2007.
  110. ^ Ito, Masami, "Does Japan's affair with tuna mean loving it to extinction?", Japan Times, 31 August 2010, p. 3. [dead link]
  111. ^ "Status of the World Fisheries for Tuna: Section A-2 – Summary" (PDF). ISSF. 15 April 2009. Archived from the original (PDF) on 27 March 2010. Retrieved 10 November 2009.
  112. ^ Produced and directed by Jonathan Clay (14 June 2009). "Fragile Paradise". South Pacific. BBC. BBC Two.
  113. ^ "Tuna overfishing continues". Cook Islands News. 12 January 2012. Archived from the original on 15 November 2013. Retrieved 19 May 2012.
  114. ^ a b Roxy, Mathew Koll; Modi, Aditi; Murtugudde, Raghu; Valsala, Vinu; Panickal, Swapna; Prasanna Kumar, S.; Ravichandran, M.; Vichi, Marcello; Lévy, Marina (28 January 2016). "A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean". Geophysical Research Letters. 43 (2): 826–833. Bibcode:2016GeoRL..43..826R. doi:10.1002/2015GL066979.

Further references

Further reading