Bessel potential
In mathematics, the Bessel potential is a potential (named after Friedrich Wilhelm Bessel) similar to the Riesz potential but with better decay properties at infinity.
If s is a complex number with positive real part then the Bessel potential of order s is the operator
where Δ is the Laplace operator and the fractional power is defined using Fourier transforms.
Yukawa potentials are particular cases of Bessel potentials for in the 3-dimensional space.
Representation in Fourier space
[edit]The Bessel potential acts by multiplication on the Fourier transforms: for each
Integral representations
[edit]When , the Bessel potential on can be represented by
where the Bessel kernel is defined for by the integral formula [1]
Here denotes the Gamma function. The Bessel kernel can also be represented for by[2]
This last expression can be more succinctly written in terms of a modified Bessel function,[3] for which the potential gets its name:
Asymptotics
[edit]At the origin, one has as ,[4]
In particular, when the Bessel potential behaves asymptotically as the Riesz potential.
At infinity, one has, as , [5]
See also
[edit]- Riesz potential
- Fractional integration
- Sobolev space
- Fractional Schrödinger equation
- Yukawa potential
References
[edit]- ^ Stein, Elias (1970). Singular integrals and differentiability properties of functions. Princeton University Press. Chapter V eq. (26). ISBN 0-691-08079-8.
- ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,2). doi:10.5802/aif.116.
- ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475. doi:10.5802/aif.116.
- ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,3). doi:10.5802/aif.116.
- ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11: 385–475. doi:10.5802/aif.116.
- Duduchava, R. (2001) [1994], "Bessel potential operator", Encyclopedia of Mathematics, EMS Press
- Grafakos, Loukas (2009), Modern Fourier analysis, Graduate Texts in Mathematics, vol. 250 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-0-387-09434-2, ISBN 978-0-387-09433-5, MR 2463316, S2CID 117771953
- Hedberg, L.I. (2001) [1994], "Bessel potential space", Encyclopedia of Mathematics, EMS Press
- Solomentsev, E.D. (2001) [1994], "Bessel potential", Encyclopedia of Mathematics, EMS Press
- Stein, Elias (1970), Singular integrals and differentiability properties of functions, Princeton, NJ: Princeton University Press, ISBN 0-691-08079-8