Jump to content

Baer–Suzuki theorem

From Wikipedia, the free encyclopedia

In mathematical finite group theory, the Baer–Suzuki theorem, proved by Baer (1957) and Suzuki (1965), states that if any two elements of a conjugacy class C of a finite group generate a nilpotent subgroup, then all elements of the conjugacy class C are contained in a nilpotent subgroup. Alperin & Lyons (1971) gave a short elementary proof.

References

[edit]
  • Alperin, J. L.; Lyons, Richard (1971), "On conjugacy classes of p-elements", Journal of Algebra, 19 (4): 536–537, doi:10.1016/0021-8693(71)90086-x, ISSN 0021-8693, MR 0289622
  • Baer, Reinhold (1957), "Engelsche Elemente Noetherscher Gruppen", Mathematische Annalen, 133 (3): 256–270, doi:10.1007/BF02547953, ISSN 0025-5831, MR 0086815, S2CID 119563147
  • Gorenstein, D. (1980), Finite groups (2nd ed.), New York: Chelsea Publishing Co., ISBN 978-0-8284-0301-6, MR 0569209
  • Suzuki, Michio (1965), "Finite groups in which the centralizer of any element of order 2 is 2-closed", Annals of Mathematics, Second Series, 82 (1): 191–212, doi:10.2307/1970569, ISSN 0003-486X, JSTOR 1970569, MR 0183773