Arithmetical ring
Appearance
In algebra, a commutative ring R is said to be arithmetical (or arithmetic) if any of the following equivalent conditions hold:
- The localization of R at is a uniserial ring for every maximal ideal of R.
- For all ideals , and ,
- For all ideals , and ,
The last two conditions both say that the lattice of all ideals of R is distributive.
An arithmetical domain is the same thing as a Prüfer domain.
References
[edit]- Boynton, Jason (2007). "Pullbacks of arithmetical rings". Commun. Algebra. 35 (9): 2671–2684. doi:10.1080/00927870701351294. ISSN 0092-7872. S2CID 120927387. Zbl 1152.13015.
- Fuchs, Ladislas (1949). "Über die Ideale arithmetischer Ringe". Comment. Math. Helv. (in German). 23: 334–341. doi:10.1007/bf02565607. ISSN 0010-2571. S2CID 121260386. Zbl 0040.30103.
- Larsen, Max D.; McCarthy, Paul Joseph (1971). Multiplicative theory of ideals. Pure and Applied Mathematics. Vol. 43. Academic Press. pp. 150–151. ISBN 0080873561. Zbl 0237.13002.