Jump to content

Silver carbonate

From Wikipedia, the free encyclopedia
(Redirected from Ag2CO3)
Silver carbonate
Crystal structure of silver carbonate
Sample of microcrystaline silver carbonate
Names
IUPAC name
Silver(I) carbonate
Other names
Argentous carbonate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.811 Edit this at Wikidata
EC Number
  • 208-590-3
MeSH silver+carbonate
UNII
  • InChI=1S/CH2O3.2Ag/c2-1(3)4;;/h(H2,2,3,4);;/q;2*+1/p-2 checkY
    Key: KQTXIZHBFFWWFW-UHFFFAOYSA-L checkY
  • InChI=1/CH2O3.2Ag/c2-1(3)4;;/h(H2,2,3,4);;/q;2*+1/p-2
    Key: KQTXIZHBFFWWFW-NUQVWONBAD
  • [Ag]OC(=O)O[Ag]
Properties
Ag2CO3
Molar mass 275.75 g/mol
Appearance Pale yellow crystals
Odor Odorless
Density 6.077 g/cm3[1]
Melting point 218 °C (424 °F; 491 K)
decomposes from 120 °C[1][4]
0.031 g/L (15 °C)
0.032 g/L (25 °C)
0.5 g/L (100 °C)[2]
8.46·10−12[1]
Solubility Insoluble in ethanol, liquid ammonia, acetates, acetone[3]
−80.9·10−6 cm3/mol[1]
Structure
Monoclinic, mP12 (295 K)
Trigonal, hP36 (β-form, 453 K)
Hexagonal, hP18 (α-form, 476 K)[5]
P21/m, No. 11 (295 K)
P31c, No. 159 (β-form, 453 K)
P62m, No. 189 (α-form, 476 K)[5]
2/m (295 K)
3m (β-form, 453 K)
6m2 (α-form, 476 K)[5]
a = 4.8521(2) Å, b = 9.5489(4) Å, c = 3.2536(1) Å (295 K)[5]
α = 90°, β = 91.9713(3)°, γ = 90°
Thermochemistry
112.3 J/mol·K[1]
167.4 J/mol·K[1]
−505.8 kJ/mol[1]
−436.8 kJ/mol[1][4]
Hazards
Occupational safety and health (OHS/OSH):
Inhalation hazards
Irritant
GHS labelling:[7]
GHS05: Corrosive GHS09: Environmental hazard
Danger
H315, H319, H335
P261, P305+P351+P338
NFPA 704 (fire diamond)
Lethal dose or concentration (LD, LC):
3.73 g/kg (mice, oral)[6]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Silver carbonate is the chemical compound with the formula Ag2CO3. This salt is yellow but typical samples are grayish due to the presence of elemental silver. It is poorly soluble in water, like most transition metal carbonates.

Preparation and reactions

[edit]

Silver carbonate can be prepared by combining aqueous solutions of sodium carbonate with a deficiency of silver nitrate.[8]

Freshly prepared silver carbonate is colourless, but the solid quickly turns yellow.[9]

Silver carbonate reacts with ammonia to give the diamminesilver(I) ([Ag(NH3)2]+) complex ion. Like other diamminesilver(I) solutions, including Tollen's reagent, there is a possibility that explosive Silver nitride may precipitate out of the solution. Silver nitride was previously known as fulminating silver but due to confusions with silver fulminate it has been discontinued by the IUPAC.[10]

With hydrofluoric acid, it gives silver fluoride.

The thermal conversion of silver carbonate to silver metal proceeds via formation of silver oxide:[11]

Uses

[edit]

The principal use of silver carbonate is for the production of silver powder for use in microelectronics. It is reduced with formaldehyde, producing silver free of alkali metals:[9]

Organic synthesis

[edit]

Silver carbonate is used as a reagent in organic synthesis.[12] In the Fétizon oxidation, silver carbonate on Celite[13] serves as an oxidising agent to form:

  • aldehydes from primary alcohols,
  • ketones from secondary alcohols,
  • keto-alcohols from diols,
  • and ketones from hydroxymethyl compounds.

In the Koenigs-Knorr reaction it is used to convert alkyl bromides to the methyl ethers. It is also employed to convert alkyl bromides into alcohols.[8] As a base, it has been used in the Wittig reaction.[14] and in C-H bond activation.[15]

References

[edit]
  1. ^ a b c d e f g h Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0.
  2. ^ Seidell, Atherton; Linke, William F. (1919). Solubilities of Inorganic and Organic Compounds (2nd ed.). New York City: D. Van Nostrand Company. p. 605.
  3. ^ Comey, Arthur Messinger; Hahn, Dorothy A. (February 1921). A Dictionary of Chemical Solubilities: Inorganic (2nd ed.). New York: The MacMillan Company. p. 203.
  4. ^ a b Anatolievich, Kiper Ruslan. "silver nitrate". chemister.ru. Retrieved 2014-07-21.
  5. ^ a b c d Norby, P.; Dinnebier, R.; Fitch, A.N. (2002). "Decomposition of Silver Carbonate; the Crystal Structure of Two High-Temperature Modifications of Ag2CO3". Inorganic Chemistry. 41 (14): 3628–3637. doi:10.1021/ic0111177. PMID 12099865.
  6. ^ a b "Silver Carbonate MSDS". saltlakemetals.com. Salt Lake City, Utah: Salt Lake Metals. Retrieved 2021-08-05.
  7. ^ Sigma-Aldrich Co., Silver carbonate. Retrieved on 2021-08-05.
  8. ^ a b McCloskey C. M.; Coleman, G. H. (1955). "β-d-Glucose-2,3,4,6-Tetraacetate". Organic Syntheses; Collected Volumes, vol. 3, p. 434.
  9. ^ a b Andreas Brumby et al. "Silver, Silver Compounds, and Silver Alloys" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2008. doi:10.1002/14356007.a24_107.pub2
  10. ^ Brumby, Andreas; Braumann, Peter; Zimmermann, Klaus; Brodeck, Francis; Vandevelde, Thierry; Goia, Dan; Renner, Hermann; Schlamp, Gunter; Zimmermann, Klaus; Weise, Wolfgang; Tews, Peter; Dermann, Klaus; Knodler, Alfons; Schroder, Karl-Heinz; Kempf, Bernd; Luschow, Hans; Peter, Cartrin; Schiele, Rainer (2008). Ullmann's Encyclopedia of Industrial Chemistry. p. 49. doi:10.1002/14356007.a24_107.pub2. ISBN 9783527306732. Retrieved 2020-12-24.
  11. ^ Koga, Nobuyoshi; Shuto Yamada; Tomoyasu Kimura (2013). "Thermal Decomposition of Silver Carbonate: Phenomenology and Physicogeometrical Kinetics". The Journal of Physical Chemistry C. 117: 326–336. doi:10.1021/jp309655s.
  12. ^ Ladd, Carolyn L. (2001). "Silver(I) Carbonate". Encyclopedia of Reagents for Organic Synthesis. pp. 1–10. doi:10.1002/047084289X.rn01865. ISBN 978-0-470-84289-8.
  13. ^ Fétizon, Marcel; Li, Yiming; Jiang, Xuefeng (2017). "Silver(I) Carbonate on Celite". Encyclopedia of Reagents for Organic Synthesis. pp. 1–19. doi:10.1002/047084289X.rs014.pub2. ISBN 978-0-470-84289-8.
  14. ^ Jedinak, Lukas et al. “Use of Silver Carbonate in the Wittig Reaction.” The Journal of Organic Chemistry 78.23 (2013): 12224–12228 https://doi.org/10.1021/jo401972a.
  15. ^ J. Org. Chem., 2018, 83 (16), pp 9312–9321 https://doi.org/10.1021/acs.joc.8b01284.
[edit]