Jump to content

ANO5

From Wikipedia, the free encyclopedia
ANO5
Identifiers
AliasesANO5, GDD1, LGMD2L, TMEM16E, anoctamin 5, LGMDR12
External IDsOMIM: 608662; MGI: 3576659; HomoloGene: 100071; GeneCards: ANO5; OMA:ANO5 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001142649
NM_213599

NM_001271879
NM_177694

RefSeq (protein)

NP_001136121
NP_998764

NP_001258808
NP_808362

Location (UCSC)Chr 11: 21.78 – 22.28 MbChr 7: 51.51 – 51.6 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Anoctamin 5 (ANO5) is a protein that in humans is encoded by the ANO5 gene.

Function

[edit]

The ANO5 gene provides instructions for making a protein called anoctamin-5. While the specific function of this protein is not well understood, it belongs to a family of proteins, called anoctamins, that act as chloride channels. Chloride channels, which transport negatively charged chlorine atoms (chloride ions) in and out of cells, play a key role in a cell's ability to generate and transmit electrical signals. Most anoctamin proteins function as chloride channels that are turned on (activated) in the presence of positively charged calcium atoms (calcium ions); these channels are known as calcium-activated chloride channels. The mechanism for this calcium activation is unclear. Anoctamin proteins are also involved in maintaining the membrane that surrounds cells and repairing the membrane if damaged.[5]

The anoctamin-5 protein is most abundant in muscles used for movement (skeletal muscles). For the body to move normally, skeletal muscles must tense (contract) and relax in a coordinated way. The regulation of chloride flow within muscle cells plays a role in controlling muscle contraction and relaxation.[5]

The anoctamin-5 protein is also found in other cells including heart (cardiac) muscle cells and bone cells. The anoctamin-5 protein may be important for the development of muscle and bone before birth.[5]

Clinical significance

[edit]

Mutations in the ANO5 gene are known to cause the following conditions:

  • Gnathodiaphyseal dysplasia (GDD), a rare skeletal syndrome.[6]
  • Limb Girdle Muscular Dystrophy 2L (LGMD2L, Autosomal Recessive 12)[6][7] and Miyoshi Muscular Dystrophy 3 (MMD3).[6] These forms of muscular dystrophy are inherited in an autosomal recessive pattern. To be affected, a person must have mutations on both copies of the gene. Males and females are equally likely to be affected.

Typical Symptoms

[edit]

GDD causes bone fragility, sclerosis of tubular bones, and cemento-osseous lesions of the jawbone. Patients also experience frequent bone fractures.[6]

Clinically, LGMD2L and MMD3 were considered different diseases before ANO5 was identified as the responsible gene; LGMD was used to describe initial weakness in proximal muscles (hip and shoulder girdles) while MMD described initial weakness in the distal muscles of the lower limbs.[6]

Other names for this gene

[edit]
  • ANO5_HUMAN
  • anoctamin-5
  • GDD1
  • gnathodiaphyseal dysplasia 1 protein
  • integral membrane protein GDD1
  • LGMD2L
  • TMEM16E
  • transmembrane protein 16E[5]

Chromosal location

[edit]
  • Cytogenetic location: 11p14.3, which is the short (p) arm of chromosome 11 at position 14.3
  • Molecular location: base pairs 22,192,485 to 22,283,367 on chromosome 11 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000171714Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000055489Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c d "ANO5 gene". Genetics Home Reference. US National Library of Medicine. Retrieved 24 July 2018. Public Domain This article incorporates text from this source, which is in the public domain.
  6. ^ a b c d e "UniProt". www.uniprot.org. Retrieved 2023-09-20.
  7. ^ "Autosomal recessive limb-girdle muscular dystrophy type 2L (Concept Id: C1969785) - MedGen - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2023-09-20.

Further reading

[edit]
[edit]