A22 (antibiotic)
Names | |
---|---|
Preferred IUPAC name
(3,4-Dichlorophenyl)methyl carbamimidothioate | |
Other names
3,4-Dichlorobenzyl carbamimidothioate
| |
Identifiers | |
3D model (JSmol)
|
|
ChEMBL | |
ChemSpider | |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C8H8Cl2N2S | |
Molar mass | 235.13 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
A22, also known as S-(3,4-dichlorobenzyl) isothiourea, is a chemical compound with antibiotic activity. It is colorless, hygroscopic, and light-sensitive.[1]
Antibiotic activity
[edit]A22 acts as a reversible inhibitor of the bacterial cell wall protein MreB, causing bacterial rod-shaped cells to form coccoid cells.[2] The antibiotic activity of A22 has been studied primarily in Pseudomonas aeruginosa. However, A22 does not seem to be useful as an antibiotic in humans due to its cytotoxic and genotoxic effects on human peripheral blood mononuclear cells (PBMCs).[2]
A22 as a research tool
[edit]Despite its cytotoxic effects in human cells, A22 has been used as a research tool to investigate the bacterial cytoskeleton. A22 binds directly to the actin homolog MreB in its nucleotide-binding pocket, blocking simultaneous ATP binding. As a consequence, A22 inhibits MreB polymerization and thus disrupts the cytoskeleton of bacteria, causing defects of morphology and chromosome segregation.[3]
References
[edit]- ^ "MreB Perturbing Compound A22". www.emdmillipore.com. Retrieved 2018-02-14.
- ^ a b Bonez PC, Ramos AP, Nascimento K, Copetti PM, Souza ME, Rossi GG, Agertt VA, Sagrillo MR, Santos RC, Campos MM (October 2016). "Antibacterial, cyto and genotoxic activities of A22 compound ((S-3, 4 -dichlorobenzyl) isothiourea hydrochloride)". Microbial Pathogenesis. 99: 14–18. doi:10.1016/j.micpath.2016.07.007. PMID 27427089.
- ^ Bean GJ, Flickinger ST, Westler WM, McCully ME, Sept D, Weibel DB, Amann KJ (June 2009). "A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB". Biochemistry. 48 (22): 4852–7. doi:10.1021/bi900014d. PMC 3951351. PMID 19382805.