1,4-Butanedithiol
Appearance
Identifiers | |
---|---|
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.013.390 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C4H10S2 | |
Molar mass | 122.24 g·mol−1 |
Appearance | colorless liquid |
Melting point | −53.9 °C (−65.0 °F; 219.2 K) |
Boiling point | 195.5 °C (383.9 °F; 468.6 K) |
Hazards | |
GHS labelling:[1] | |
Warning | |
H315, H319, H335 | |
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
1,4-Butanedithiol is an organosulfur compound with the formula HSCH2CH2CH2CH2SH. It is a malodorous, colorless liquid that is highly soluble in organic solvents. The compound has found applications in biodegradable polymers.[2]
Reactions
[edit]Alkylation with geminal dihalides gives 1,3-dithiepanes. Oxidation gives the cyclic disulfide 1,2-dithiane:[3]
- HSCH2CH2CH2CH2SH + O → S2(CH2)4 + H2O
It forms self-assembled monolayers on gold.[4]
It is also used in polyadditions along with 1,4-butanediol to form sulfur-containing polyester and polyurethanes containing diisocyanate.[5][6][7] Several of these polymers are considered biodegradable and many of their components are sourced from non-petroleum oils.[8]
Related compounds
[edit]References
[edit]- ^ "1,4-Butanedithiol". pubchem.ncbi.nlm.nih.gov.
- ^ Türünç, Oĝuz; Meier, Michael A. R. (2011). "Thiol-ene vs. ADMET: a complementary approach to fatty acid-based biodegradable polymers". Green Chemistry. 13 (2): 314. doi:10.1039/c0gc00773k. ISSN 1463-9262.
- ^ Oba, Makoto; Tanaka, Kazuhito; Nishiyama, Kozaburo; Ando, Wataru (2011). "Aerobic Oxidation of Thiols to Disulfides Catalyzed by Diaryl Tellurides under Photosensitized Conditions". The Journal of Organic Chemistry. 76 (10): 4173–4177. doi:10.1021/jo200496r. PMID 21480642.
- ^ Park, Jong-Won; Shumaker-Parry, Jennifer S. (2014). "Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles". Journal of the American Chemical Society. 136 (5): 1907–1921. doi:10.1021/ja4097384. PMID 24422457.
- ^ Kojio, Ken; Nozaki, Shuhei; Takahara, Atsushi; Yamasaki, Satoshi (2020). "Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review". Journal of Polymer Research. 27 (6). doi:10.1007/s10965-020-02090-9. ISSN 1022-9760. S2CID 218528107.
- ^ Sakhno, T. V.; Sakhno, Yu. E.; Kuchmiy, S. Ya. (2023). "Clusteroluminescence of Unconjugated Polymers: A Review". Theoretical and Experimental Chemistry. 59 (2): 75–106. doi:10.1007/s11237-023-09768-3. ISSN 0040-5760. S2CID 260597152.
- ^ Manzano, Verónica E.; Kolender, Adriana A.; Varela, Oscar (2017), Goyanes, Silvia Nair; D’Accorso, Norma Beatriz (eds.), "Synthesis and Applications of Carbohydrate-Based Polyurethanes", Industrial Applications of Renewable Biomass Products, Cham: Springer International Publishing, pp. 1–43, doi:10.1007/978-3-319-61288-1_1, ISBN 978-3-319-61287-4, retrieved 2023-12-05
- ^ Kreye, Oliver; Tóth, Tommy; Meier, Michael A. R. (2011-09-01). "Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition". European Polymer Journal. 47 (9): 1804–1816. Bibcode:2011EurPJ..47.1804K. doi:10.1016/j.eurpolymj.2011.06.012. ISSN 0014-3057.