Jump to content

Exponential integral

From Wikipedia, the free encyclopedia
(Redirected from Well function)

Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the exponential integral Ei is a special function on the complex plane.

It is defined as one particular definite integral of the ratio between an exponential function and its argument.

Definitions

[edit]

For real non-zero values of x, the exponential integral Ei(x) is defined as

[1]

Properties

[edit]

Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.

Convergent series

[edit]
Plot of function (top) and function (bottom).

For real or complex arguments off the negative real axis, can be expressed as[2]

where is the Euler–Mascheroni constant. The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis.

This formula can be used to compute with floating point operations for real between 0 and 2.5. For , the result is inaccurate due to cancellation.

A faster converging series was found by Ramanujan:

Asymptotic (divergent) series

[edit]
Relative error of the asymptotic approximation for different number of terms in the truncated sum

Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for .[3] However, for positive values of x, there is a divergent series approximation that can be obtained by integrating by parts:[4]

The relative error of the approximation above is plotted on the figure to the right for various values of , the number of terms in the truncated sum ( in red, in pink).

Asymptotics beyond all orders

[edit]

Using integration by parts, we can obtain an explicit formula[5]For any fixed , the absolute value of the error term decreases, then increases. The minimum occurs at , at which point . This bound is said to be "asymptotics beyond all orders".

Exponential and logarithmic behavior: bracketing

[edit]
Bracketing of by elementary functions

From the two series suggested in previous subsections, it follows that behaves like a negative exponential for large values of the argument and like a logarithm for small values. For positive real values of the argument, can be bracketed by elementary functions as follows:[6]

The left-hand side of this inequality is shown in the graph to the left in blue; the central part is shown in black and the right-hand side is shown in red.

Definition by Ein

[edit]

Both and can be written more simply using the entire function [7] defined as

(note that this is just the alternating series in the above definition of ). Then we have

Relation with other functions

[edit]

Kummer's equation

is usually solved by the confluent hypergeometric functions and But when and that is,

we have

for all z. A second solution is then given by E1(−z). In fact,

with the derivative evaluated at Another connexion with the confluent hypergeometric functions is that E1 is an exponential times the function U(1,1,z):

The exponential integral is closely related to the logarithmic integral function li(x) by the formula

for non-zero real values of .

Generalization

[edit]

The exponential integral may also be generalized to

which can be written as a special case of the upper incomplete gamma function:[8]

The generalized form is sometimes called the Misra function[9] , defined as

Many properties of this generalized form can be found in the NIST Digital Library of Mathematical Functions.

Including a logarithm defines the generalized integro-exponential function[10]

Derivatives

[edit]

The derivatives of the generalised functions can be calculated by means of the formula [11]

Note that the function is easy to evaluate (making this recursion useful), since it is just .[12]

Exponential integral of imaginary argument

[edit]
against ; real part black, imaginary part red.

If is imaginary, it has a nonnegative real part, so we can use the formula

to get a relation with the trigonometric integrals and :

The real and imaginary parts of are plotted in the figure to the right with black and red curves.

Approximations

[edit]

There have been a number of approximations for the exponential integral function. These include:

  • The Swamee and Ohija approximation[13] where
  • The Allen and Hastings approximation [13][14] where
  • The continued fraction expansion [14]
  • The approximation of Barry et al. [15] where: with being the Euler–Mascheroni constant.

Inverse function of the Exponential Integral

[edit]

We can express the Inverse function of the exponential integral in power series form:[16]

where is the Ramanujan–Soldner constant and is polynomial sequence defined by the following recurrence relation:

For , and we have the formula :

Applications

[edit]
  • Time-dependent heat transfer
  • Nonequilibrium groundwater flow in the Theis solution (called a well function)
  • Radiative transfer in stellar and planetary atmospheres
  • Radial diffusivity equation for transient or unsteady state flow with line sources and sinks
  • Solutions to the neutron transport equation in simplified 1-D geometries[17]

See also

[edit]

Notes

[edit]
  1. ^ Abramowitz and Stegun, p. 228, 5.1.7
  2. ^ Abramowitz and Stegun, p. 229, 5.1.11
  3. ^ Bleistein and Handelsman, p. 2
  4. ^ Bleistein and Handelsman, p. 3
  5. ^ O’Malley, Robert E. (2014), O'Malley, Robert E. (ed.), "Asymptotic Approximations", Historical Developments in Singular Perturbations, Cham: Springer International Publishing, pp. 27–51, doi:10.1007/978-3-319-11924-3_2, ISBN 978-3-319-11924-3, retrieved 2023-05-04
  6. ^ Abramowitz and Stegun, p. 229, 5.1.20
  7. ^ Abramowitz and Stegun, p. 228, see footnote 3.
  8. ^ Abramowitz and Stegun, p. 230, 5.1.45
  9. ^ After Misra (1940), p. 178
  10. ^ Milgram (1985)
  11. ^ Abramowitz and Stegun, p. 230, 5.1.26
  12. ^ Abramowitz and Stegun, p. 229, 5.1.24
  13. ^ a b Giao, Pham Huy (2003-05-01). "Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis' Solution". Ground Water. 41 (3): 387–390. Bibcode:2003GrWat..41..387G. doi:10.1111/j.1745-6584.2003.tb02608.x. ISSN 1745-6584. PMID 12772832. S2CID 31982931.
  14. ^ a b Tseng, Peng-Hsiang; Lee, Tien-Chang (1998-02-26). "Numerical evaluation of exponential integral: Theis well function approximation". Journal of Hydrology. 205 (1–2): 38–51. Bibcode:1998JHyd..205...38T. doi:10.1016/S0022-1694(97)00134-0.
  15. ^ Barry, D. A; Parlange, J. -Y; Li, L (2000-01-31). "Approximation for the exponential integral (Theis well function)". Journal of Hydrology. 227 (1–4): 287–291. Bibcode:2000JHyd..227..287B. doi:10.1016/S0022-1694(99)00184-5.
  16. ^ "Inverse function of the Exponential Integral Ei-1(x)". Mathematics Stack Exchange. Retrieved 2024-04-24.
  17. ^ George I. Bell; Samuel Glasstone (1970). Nuclear Reactor Theory. Van Nostrand Reinhold Company.

References

[edit]
[edit]