From Wikipedia, the free encyclopedia
User:Pfafrich/Blahtex en.wikipedia fixup
This page is part a set of pages devoted to fixing latex bugs in the english wikipedia so that they will be compatable with the meta:Blahtex MathML project.
Below are pages which contain x^\sqrt', x^\acute etc. Each occurence x^\sqrt{a} should be replaced by x^{\sqrt{a}} and when fixed the pages should be moved to the done section. Feel free to fix as necessary.
The combinations affected are
x^\overline{y}
x^\left(y\right)
x^\acute{n}
x^\hat{n}
x^\mbox{n}
x^\sqrt{n}
x^\ldots
x^\overline{y}
for i in acute hat ldots left mbox overline sqrt underline ; do
grep "\\^\\\\$i" eqnsJan06.txt >> raise.txt
done
Asymptotic expansion
ζ
(
s
)
∼
∑
n
=
1
N
−
1
n
−
s
+
N
1
−
s
s
−
1
+
N
−
s
∑
m
=
1
∞
B
2
m
s
2
m
−
1
¯
(
2
m
)
!
N
2
m
−
1
{\displaystyle \zeta (s)\sim \sum _{n=1}^{N-1}n^{-s}+{\frac {N^{1-s}}{s-1}}+N^{-s}\sum _{m=1}^{\infty }{\frac {B_{2m}s^{\overline {2m-1}}}{(2m)!N^{2m-1}}}}
Asymptotic expansion
s
2
m
−
1
¯
{\displaystyle s^{\overline {2m-1}}}
Band gap
e
(
−
E
g
k
T
)
{\displaystyle e^{\left({\frac {-E_{g}}{kT}}\right)}}
Coupled cluster
|
Ψ
⟩
=
e
T
^
|
Φ
0
⟩
{\displaystyle \vert {\Psi }\rangle =e^{\hat {T}}\vert {\Phi _{0}}\rangle }
Difference quotient
=
∑
I
=
0
N
´
(
−
1
I
)
(
N
´
I
)
F
(
P
n
´
−
I
Δ
1
P
)
Δ
1
P
n
´
;
{\displaystyle ={\frac {\sum _{I=0}^{\acute {N}}{-1 \choose I}{{\acute {N}} \choose I}F(P_{\acute {n}}-I\Delta _{1}P)}{\Delta _{1}P^{\acute {n}}}};\,\!}
Difference quotient
=
∑
I
=
0
N
´
(
−
1
N
´
−
I
)
(
N
´
I
)
F
(
P
0
+
I
Δ
1
P
)
Δ
1
P
n
´
;
{\displaystyle ={\frac {\sum _{I=0}^{\acute {N}}{-1 \choose {\acute {N}}-I}{{\acute {N}} \choose I}F(P_{0}+I\Delta _{1}P)}{\Delta _{1}P^{\acute {n}}}};\,\!}
Difference quotient
Δ
n
´
F
(
P
0
)
{\displaystyle \Delta ^{\acute {n}}F(P_{0})\,\!}
Difference quotient
D
n
´
F
(
P
0
)
D
P
n
´
{\displaystyle {\frac {D^{\acute {n}}F(P_{0})}{DP^{\acute {n}}}}\,\!}
Difference quotient
Δ
n
´
F
(
P
0
)
Δ
1
P
n
´
{\displaystyle {\frac {\Delta ^{\acute {n}}F(P_{0})}{\Delta _{1}P^{\acute {n}}}}\,\!}
Difference quotient
∇
n
´
F
(
P
n
´
)
Δ
1
P
n
´
{\displaystyle {\frac {\nabla ^{\acute {n}}F(P_{\acute {n}})}{\Delta _{1}P^{\acute {n}}}}\,\!}
Difference quotient
d
n
´
F
(
P
0
)
d
P
n
´
{\displaystyle {\frac {d^{\acute {n}}F(P_{0})}{dP^{\acute {n}}}}\,\!}
[[Gelfond<E2><80><93>Schneider constant]]
2
2
=
2.6651441...
{\displaystyle 2^{\sqrt {2}}=2.6651441...}
[[Gelfond<E2><80><93>Schneider constant]]
2
2
=
1.6325269...
{\displaystyle {\sqrt {2}}^{\sqrt {2}}=1.6325269...}
Googol
10
googol
{\displaystyle {10}^{\mbox{googol}}}
Googolplex
10
10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000
{\displaystyle {10}^{\mbox{10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000}}}
Googolplex
10
googol
{\displaystyle {10}^{\mbox{googol}}}
Irrational number
π
2
{\displaystyle \pi ^{\sqrt {2}}}
Limit ordinal
ω
3
,
ω
4
,
…
,
ω
ω
,
ω
ω
ω
,
…
,
ϵ
0
=
ω
ω
ω
…
,
…
{\displaystyle \omega ^{3},\omega ^{4},\ldots ,\omega ^{\omega },\omega ^{\omega ^{\omega }},\ldots ,\epsilon _{0}=\omega ^{\omega ^{\omega ^{\ldots }}},\ldots }
Nonconstructive proof
(
2
2
)
2
=
2
(
2
⋅
2
)
=
2
2
=
2
{\displaystyle \left({\sqrt {2}}^{\sqrt {2}}\right)^{\sqrt {2}}={\sqrt {2}}^{({\sqrt {2}}\cdot {\sqrt {2}})}={\sqrt {2}}^{2}=2}
Nonconstructive proof
2
2
{\displaystyle {\sqrt {2}}^{\sqrt {2}}}
Nonconstructive proof
q
=
2
2
{\displaystyle q={\sqrt {2}}^{\sqrt {2}}}
Proof of Bertrand's postulate
(
2
n
)
2
n
{\displaystyle (2n)^{\sqrt {2n}}}
Proof of Bertrand's postulate
4
n
2
n
+
1
≤
(
2
n
)
2
n
4
2
n
3
{\displaystyle {\frac {4^{n}}{2n+1}}\leq (2n)^{\sqrt {2n}}4^{\frac {2n}{3}}}
Proof of Bertrand's postulate
4
n
2
n
+
1
≤
(
2
n
n
)
≤
(
2
n
)
2
n
∏
p
∈
P
2
n
3
p
=
(
2
n
)
2
n
e
θ
(
2
n
3
)
{\displaystyle {\frac {4^{n}}{2n+1}}\leq {2n \choose n}\leq (2n)^{\sqrt {2n}}\prod _{p\in \mathbb {P} }^{\frac {2n}{3}}p=(2n)^{\sqrt {2n}}e^{\theta ({\frac {2n}{3}})}}
Rigid rotor
P
l
|
m
|
(
cos
θ
)
{\displaystyle P_{l}^{\left|m\right|}(\cos \theta )}
Rigid rotor
Y
l
,
m
(
θ
,
ϕ
)
=
[
(
2
l
+
1
)
2
(
l
−
|
m
|
)
!
(
l
+
|
m
|
)
!
P
l
|
m
|
(
cos
θ
)
]
[
1
2
π
exp
(
i
m
ϕ
)
]
{\displaystyle Y_{l,m}(\theta ,\phi )=\left[{\sqrt {{(2l+1) \over 2}{(l-\left|m\right|)! \over (l+\left|m\right|)!}}}P_{l}^{\left|m\right|}(\cos \theta )\right]\left[{\sqrt {1 \over 2\pi }}\exp(im\phi )\right]}
Schwarzschild coordinates
d
σ
m
^
=
−
ω
m
^
n
^
∧
σ
n
^
{\displaystyle d\sigma ^{\hat {m}}=-{\omega ^{\hat {m}}}_{\hat {n}}\,\wedge \sigma ^{\hat {n}}}
Schwarzschild coordinates
Ω
m
^
n
^
=
d
ω
m
^
n
^
∧
σ
n
^
−
ω
m
^
ℓ
^
∧
ω
ℓ
^
n
^
{\displaystyle {\Omega ^{\hat {m}}}_{\hat {n}}=d{\omega ^{\hat {m}}}_{\hat {n}}\wedge \sigma ^{\hat {n}}-{\omega ^{\hat {m}}}_{\hat {\ell }}\wedge {\omega ^{\hat {\ell }}}_{\hat {n}}}
Schwarzschild coordinates
Ω
m
^
n
^
=
R
m
^
n
^
|
i
^
j
^
|
σ
i
^
∧
σ
j
^
{\displaystyle {\Omega ^{\hat {m}}}_{\hat {n}}={R^{\hat {m}}}_{{\hat {n}}|{\hat {i}}{\hat {j}}|}\,\sigma ^{\hat {i}}\wedge \sigma ^{\hat {j}}}
Schwarzschild coordinates
ω
m
^
n
^
{\displaystyle {\omega ^{\hat {m}}}_{\hat {n}}}
Space charge
i
=
(
1
−
r
~
)
A
0
T
2
e
(
−
e
ϕ
k
T
)
{\displaystyle i=(1-{\tilde {r}})A_{0}T^{2}e^{\left({\frac {-e\phi }{kT}}\right)}}
User:Bkell/Sandbox
113
355
_
{\displaystyle {}_{113}^{\underline {355}}}
User:Neocapitalist
(
2
2
)
2
=
2
2
=
2
{\displaystyle ({\sqrt {2}}^{\sqrt {2}})^{\sqrt {2}}={\sqrt {2}}^{2}=2}
User:Neocapitalist
2
2
{\displaystyle {\sqrt {2}}^{\sqrt {2}}}
User:Neocapitalist
a
=
(
2
2
)
{\displaystyle a=({\sqrt {2}}^{\sqrt {2}})}
User:Neocapitalist
k
n
=
2
2
{\displaystyle k^{n}={\sqrt {2}}^{\sqrt {2}}}
User:Pjacobi/Scratchpad
User:Stendhalconques
ζ
(
s
)
∼
∑
n
=
1
N
−
1
n
−
s
+
N
1
−
s
s
−
1
+
N
−
s
∑
m
=
1
∞
B
2
m
s
2
m
−
1
¯
(
2
m
)
!
N
2
m
−
1
{\displaystyle \zeta (s)\sim \sum _{n=1}^{N-1}n^{-s}+{\frac {N^{1-s}}{s-1}}+N^{-s}\sum _{m=1}^{\infty }{\frac {B_{2m}s^{\overline {2m-1}}}{(2m)!N^{2m-1}}}}
User:Stendhalconques
s
2
m
−
1
¯
{\displaystyle s^{\overline {2m-1}}}
STOP STOP STOP STOP
STOP STOP STOP STOP
STOP STOP STOP STOP
STOP STOP STOP STOP
STOP STOP STOP STOP
No, "x^\frac{a}{b}" is perfectly okay! On both blahtex and regular LaTeX!
Even "x^\frac a b" is fine.
The reason: "\frac" is a macro in LaTeX, and "x^\frac a b" gets expanded as "x^{a \over b}" (well maybe something more complicated, but you get the idea).
Blahtex knows this about "\frac".
So leave this page alone and go onto the next one!!! Dmharvey 03:55, 11 February 2006 (UTC)
STOP STOP STOP STOP
STOP STOP STOP STOP
STOP STOP STOP STOP
STOP STOP STOP STOP
STOP STOP STOP STOP