Jump to content

SpaceX Super Heavy

From Wikipedia, the free encyclopedia

Super Heavy
Super Heavy Booster 12 approaching the tower during Starship flight test 5 on October 13, 2024
ManufacturerSpaceX
Country of originUnited States
Used onSpaceX Starship
Launch history
StatusIn development
Total launches5
Failed1 (Flight 1)
OtherFailed after staging: 2 (Flight 2, Flight 3)
First flightApril 20, 2023
Block 1 Super Heavy
Height71 m (233 ft),[1] 69 m (226 ft) without Vented Interstage
Diameter9 m (30 ft)
Empty mass275,000 kg (606,000 lb)
Gross mass3,675,000 kg (8,102,000 lb)
Propellant mass3,400,000 kg (7,500,000 lb)[2]
Powered by33 × Raptor 2 engines
Maximum thrust69.9 MN (15,700,000 lbf)[3]
Specific impulseSL: 327 s (3.21 km/s), Vac: 347 s (3.40 km/s)
Burn time166 seconds
PropellantCH4 / LOX

Super Heavy is the reusable first stage of the SpaceX Starship super heavy-lift launch vehicle, which it composes in combination with the Starship second stage. As a part of SpaceX's Mars colonization program, the booster evolved into its current design over a decade.[4][5][6] Production began in 2021, with the first flight being conducted on April 20, 2023, during the first orbital launch attempt of the Starship rocket.[7][8]

Design

[edit]

Super Heavy is 71 m (233 ft) tall, 9 m (30 ft) wide,[9] and is composed of four general sections: the engines, the fuel tank, the oxygen tank, and the interstage.[10] Elon Musk stated in 2021 that the final design will have a dry mass between 160 t (350,000 lb) and 200 t (440,000 lb), with the tanks weighing 80 t (180,000 lb) and the interstage 20 t (44,000 lb).[10]

Tanks

[edit]

The propellant tanks on Super Heavy are separated by a common bulkhead, similar to the ones used on the S-II and S-IVB stages on the Saturn V rocket[11][12] After Starship's Second Flight Test, the common dome's design was changed to a more elliptical dome,[13] which has changed the propellant capacity of both tanks by an unknown, but likely negligible, amount.[13] Both tanks are heavily reinforced, with roughly 74 stringers attached to the interior walls of the tanks.[14] The booster's tanks hold 3,400 t (7,500,000 lb) of propellant,[15] consisting of 2,700 t (6,000,000 lb) of liquid oxygen and 700 t (1,500,000 lb) of liquid methane.[a]

The methane tank has a camera installed in the forward dome, enabling images of the interior of the tank.[16] Fuel is fed to the engines via a single downcomer, which terminates in a large distribution manifold above the engines.[17] The design of this manifold was changed when Super Heavy was upgraded from twenty-nine engines to thirty-three, with the more modern design featuring a dedicated methane sump instead of a direct distribution manifold.[18]

The oxygen tank terminates with the thrust structure of the vehicle. While the outer twenty engines are mounted to the walls of the aft bay, the inner thirteen are mounted directly to the thrust puck, which is part of the aft dome.[18] A large steel structure is mounted at the bottom of the dome, reinforcing the thrust puck enough to enable its support of the inner thirteen engines, while also providing pathways for methane and oxygen to flow into the engines.[18] Large slosh baffles were added in this region as well, beginning on Booster 10.[13] A header tank is used to supply liquid oxygen during the landing burn for the inner thirteen engines.[19] On Booster 15, the header tank has at least nine additional tanks attached, increasing total propellant supply during the landing burn.[20][21] These tanks may have been present on Boosters 12, 13, and 14, though this is unconfirmed.[22] Booster 5 was the only twenty-nine engine booster to receive a header tank, which was mounted to the side of the oxygen tank.[18] It is unknown whether or not the top of this tank was ever completed, as a forward dome was never spotted.[18]

The methane downcomer is partially contained within the header tank, as the methane sump is located directly below it.[19] On Booster 7 and all subsequent vehicles, four chines are located on the sides of the oxygen tank, protecting the COPVs and CO2 tanks for fire suppression, as well as providing lift during descent.[23]

Propulsion

[edit]

Super Heavy is powered by thirty-three Raptor engines, which are housed within a dedicated shielding compartment.[24] This compartment is not present before engine installation, thus, boosters are roughly three meters shorter before engine installation.[25] The outer twenty engines, arranged in a single ring, are in a fixed position.[24] In order to save weight, these engines are started using ground support equipment on the launch mount and cannot be reignited for subsequent burns.[26] The inner thirteen engines are attached to an adapter, which rests directly against the thrust puck/aft dome assembly.[24] These engines are equipped with gimbal actuators, and reignite for the boostback and landing burns.[27] After Starship's first flight test, this gimbaling system was switched from a hydraulic system to an electric one, enabling the removal of the hydraulic power units.[28] This change was made to the upper stage after the second flight test. During the ascent burn and boostback burns, the engines draw propellant from the main tanks, with the liquid oxygen being drawn from a dedicated header tank during the landing burn.[19] Like the thrust vector control system, the engine shielding, which isolates individual engines in the event of a failure, was upgraded after Starship's first flight test, alongside the fire suppression system.[28] This system uses CO2 tanks to purge the individual engine compartments during flight, as well as a nitrogen purge while on the launch pad.[29] The aft bay has eighteen vents visible on the outside of the booster, which are believed to be connected to the outer twenty engines,[29] while the center engines vent directly below the launch pad.[29]

Raptor uses a full-flow staged combustion cycle, which has both oxygen and methane-rich turbopumps.[30][31] Before 2014, only two full-flow staged-combustion rocket engine designs had advanced enough to undergo testing on test stands: the Soviet RD-270 project in the 1960s and the Aerojet Rocketdyne Integrated Powerhead Demonstrator in the mid-2000s.[32] To improve performance, the engines burn super cooled propellant.[33]

The current version of the booster produces a total of 69.9 MN (15,700,000 lbf),[34] just over twice that of the Saturn V first stage,[35] with this total being expected to increase to 80.8 MN (18,200,000 lbf) for Block 2 boosters and later up to 98.1 MN (22,100,000 lbf) with the Block 3 vehicle.[34] These later versions may have up to thirty-five engines.[36] The combined plume of the engines produces large shock diamonds in the exhaust during the ascent burn.[37]

During unpowered flight in the upper atmosphere, control authority is provided by cold gas thrusters fed with residual ullage gas.[38][39] Four perpendicular vents are located within the interstage, placed at a forty-five degree angle from the hardpoints.[38] Additionally, four "cowbell" vents are located just below the common dome, which point down towards the engines, though at a slight angle.[38]

Interstage

[edit]

The interstage is also equipped with four electrically actuated grid fins made of stainless steel, each with a mass of 3 t (6,600 lb).[40] These grid fins are paired together, with the fins in each pair being sixty degrees apart from each other, differing from the Falcon 9 booster, which has titanium grid fins mounted ninety degrees from each other.[41][42] This is done to improve control in the pitch axis.[42] Additionally, these fins remain extended during ascent in order to save weight.[10] The interstage also has protruding hardpoints, located between grid fins, allowing the booster to be lifted or caught by the launch tower.[43] The ability to lift a booster from these hardpoints was proven on August 23, 2022, when Booster 7 was lifted onto OLM A.[44] The first catch of a booster occurred on October 13, 2024, using Booster 12.[45]

Animation of Super Heavy's integration to the launch mount, using mechanical arms.

After the first Starship test flight, all boosters have an additional 1.8 m[46] tall vented interstage to enable hot staging.[47] During hot staging, Super Heavy shuts down all but 3 of its engines,[48][49] while the second stage fires its engines before separating, thus the second stage "pushes off" from the first stage giving added thrust.[48] The vented interstage contains a dome to shield the top of Super Heavy from the second stage's engines.[47][49] Elon Musk in 2023 claimed that this change might result in a 10% increase in the payload to low Earth orbit.[49] Beginning with Booster 11, the interstage is jettisoned after completion of the boostback burn, in order to reduce mass during descent.[50] As of June 2024, SpaceX does not intend to jettison the interstage when flying Block 2 and Block 3 boosters, as the interstage will be directly integrated into the vehicle.[50]

Manufacturing

[edit]
Large steel cylinder with complex engine mounts and wiring
Underside of a 29 engine Super Heavy booster prior to engine installation.

As of November 2024, all Super Heavy components are manufactured at Starbase, Texas.[51]

The manufacturing process starts with rolls of stainless steel, which are unrolled, cut, and welded along an edge to create a cylinder of 9 m (30 ft) diameter, 1.83 m (6.00 ft) tall, and 3.97 mm (0.156 in) thick,[46] and approximately 1600 kg (3,600 lb) in mass.[b] Thirty-three such rings are used in the Super Heavy Booster,[52] while four rings are 1.4 m (4 ft 7 in) tall.[52] These shorter rings are used exclusively in the aft section.[52] A 1 m (3 ft 3 in) and a 1.7 m (5 ft 7 in) tall ring are used to construct the liquid oxygen header tank. These rings have a significantly smaller diameter than the main rings.[52]

The forward dome is constructed out of two segments: the "dome knuckle" and the "dome frustum".[52][18] The aft dome has a third component: the "thrust puck", which supports the inner thirteen engines,[18] while the common dome is formed out of a single type of piece, and is more elliptical than the forward and aft domes.[52]

These rings are stacked and robotically welded along their edges to form stacks of three to four rings in the Starfactory.[52] Stringers are then added to the ring stacks, improving the structural strength of the booster.[52] For the forward section, cutouts are made for the grid fins and hardpoints.[52] Following this, the domes are installed within the forward, aft, and common ring stacks.[52] The forward ring stack consists of three rings, and the common ring stack consists of four.[52] The aft section is constructed solely from the four 1.4 m (4 ft 7 in) rings.[52] Tank vents and external piping is added at this stage, followed by the COPVs and header tank.[52]

Following completion of each of the ring stacks, the stacking of these sections begins, beginning with assembly of the methane tank.[52] This process occurs in Mega Bay 1. Once the methane tank is completed, the oxygen tank is assembled, already integrated to the common dome.[52] Before assembly of the oxygen tank is finished, the methane downcomer is added, along with final stringers to the weld lines.[52] When both tanks are complete, the methane tank is stacked onto the oxygen tank, completing the primary tankage assembly.[52] Chines are added after this stage.[53]

The vehicle is then rolled to the Massey's test site, and cryogenically tested two to three times.[54] These tests fill both tanks with liquid nitrogen, which is nonflammable, though liquid oxygen may be loaded as well.[52] After returning to the production site, the engines are installed, alongside their shielding, which forms the aft bay.[24] This is followed by static fire testing at the launch site.[52] Once this test is completed, the vented interstage is added to the vehicle.[14]

History

[edit]

Early concepts

[edit]

Mars Colonial Transporter

[edit]

In October 2012, the company made the first public articulation of plans to develop a fully reusable rocket system with substantially greater capabilities than SpaceX's existing Falcon 9.[55] Later in 2012,[7] the company first mentioned the Mars Colonial Transporter rocket concept in public. It was to be able to carry 100 people or 100 t (220,000 lb) of cargo to Mars and would be powered by methane-fueled Raptor engines.[11] Musk referred to this new launch vehicle under the unspecified acronym "MCT",[55] revealed to stand for "Mars Colonial Transporter" in 2013,[13] which would serve the company's Mars system architecture.[56] SpaceX COO Gwynne Shotwell gave a potential payload range between 150–200 tons to low Earth orbit for the planned rocket.[55] According to SpaceX engine development head Tom Mueller, SpaceX could use nine Raptor engines on a single MCT booster or spacecraft.[57][13] The preliminary design would be at least 10 meters (33 ft) in diameter, and was expected to have up to three cores totaling at least 27 booster engines.[56]

Interplanetary Transport System

[edit]

On September 27, 2016, at 67th International Astronautical Congress, SpaceX CEO Elon Musk announced SpaceX was developing a new rocket using Raptor engines called the Interplanetary Transport System. It would have two stages, a reusable booster and spacecraft. The stages' tanks were to be made from carbon composite, storing liquid methane and liquid oxygen. Despite the rocket's 300 t (660,000 lb) launch capacity to low Earth orbit, it was expected to have a low launch price. The spacecraft featured three variants: crew, cargo, and tanker; the tanker variant is used to transfer propellant to spacecraft in orbit.[58] The concept, especially the technological feats required to make such a system possible and the funds needed, garnered substantial skepticism.[59] Both stages would use autogenous pressurization of the propellant tanks, eliminating the Falcon 9's problematic high-pressure helium pressurization system.[60][61][62]

2016 artist's concept of the ITS booster returning to the launch pad

The ITS booster was to be a 12 m-diameter (39 ft), 77.5 m-high (254 ft), reusable first stage powered by 42 engines, each producing 3,024 kilonewtons (680,000 lbf) of thrust. Total booster thrust would have been 128 MN (29,000,000 lbf) at liftoff, increasing to 138 MN (31,000,000 lbf) in a vacuum,[4] several times the 36 MN (8,000,000 lbf) thrust of the Saturn V.[60] It weighed 275 tonnes (606,000 lb) when empty and 6,700 tonnes (14,800,000 lb) when completely filled with propellant. It would have used grid fins to help guide the booster through the atmosphere for a precise landing.[4] The engine configuration included 21 engines in an outer ring and 14 in an inner ring. The center cluster of seven engines would be able to gimbal for directional control, although some directional control would be achieved via differential thrust with the fixed engines. Each engine would be capable of throttling between 20 and 100 percent of rated thrust.[61]

The design goal was to achieve a separation velocity of about 8,650 km/h (5,370 mph) while retaining about 7% of the initial propellant to achieve a vertical landing at the launch pad.[61][63]The design called for grid fins to guide the booster during atmospheric reentry.[61] The booster return flights were expected to encounter loads lower than the Falcon 9, principally because the ITS would have both a lower mass ratio and a lower density.[64] The booster was to be designed for 20 g nominal loads, and possibly as high as 30–40 g.[64]

In contrast to the landing approach used on SpaceX's Falcon 9—either a large, flat concrete pad or downrange floating landing platform, the ITS booster was to be designed to land on the launch mount itself, for immediate refueling and relaunch.[61]

Big Falcon Rocket

[edit]

In September 2017, at the 68th annual meeting of the International Astronautical Congress, Musk announced a new launch vehicle calling it the BFR, again changing the name, though stating that the name was temporary.[65] The acronym was alternatively stated as standing for Big Falcon Rocket or Big Fucking Rocket, a tongue-in-cheek reference to the BFG from the Doom video game series.[66] The vehicle was designed to be 106 meters (348 ft) tall, 9 meters (30 ft) in diameter, and made of carbon composites.[67][5]

Starship

[edit]

In December 2018, the structural material was changed from carbon composites[61][60] to stainless steel,[68][69] marking the transition from early design concepts of the Starship.[68][70][71] Musk cited numerous reasons for the design change; low cost and ease of manufacture, increased strength of stainless steel at cryogenic temperatures, as well as its ability to withstand high heat.[72][70] In 2019, SpaceX began to refer to the entire vehicle as Starship, with the second stage being called Starship and the booster Super Heavy.[73][74][75][76] In September 2019, Musk held an event about Starship development during which he further detailed the booster.[77][78][79]

Ground testing

[edit]

In March 2021, SpaceX assembled the first Super Heavy prototype, BN1, a production pathfinder for future vehicles.[80] It was scrapped on March 30.[81] The next booster, BN3, was completed on June 29, 2021.[82] It conducted the first cryogenic proof test of a Super Heavy on July 13, followed by the only static fire of a Super Heavy booster at the Suborbital Launch Site on July 19.[83] It was partially scrapped in August,[84] with the process concluding in January of 2022.[85]

Booster 4 was the first vehicle intended to fly on Starship's Flight Test 1. It was the first Super Heavy to be stacked with Starship,[86] and conducted multiple cryogenic tests before being retired in favor of Booster 7 and Ship 24.[87]

Booster 7 being tested on the orbital launch pad at Starbase, Boca Chica, Texas in February 2023.

Flight testing

[edit]

Booster 7 and Ship 24 conducted several static fire and spin prime tests before launch,[88]: 20 [89] with the first such test doing significant damage to Booster 7 on July 11, 2022.[90] After a launch attempt aborted on April 17, 2023,[91] Booster 7 and Ship 24 lifted off on 20 April at 13:33 UTC in the first orbital flight test.[7] Three engines were disabled during the launch sequence and several more failed during the flight.[92] The flight concluded when the booster lost thrust vectoring control of the Raptor engines, resulting in the rocket spinning out of control.[92] The flight termination system (FTS) was activated, though the vehicle tumbled for another 40 seconds before disintegrating.[93][94][95]

After the first test flight, SpaceX began work on the launch mount to repair the damage it sustained during the test and to prevent future issues. The foundation of the launch tower was reinforced and a water powered flame deflector was built under the launch mount.[96] Ship 25 and Booster 9 were rolled to the suborbital and orbital launch sites in May to undergo multiple tests.[97][98]

On 18 November 2023, Booster 9 and Ship 25 lifted off the pad.[99] All 33 engines continued to function until staging, where the second stage separated by pushing itself away from the first stage using a hot-staging technique.[100] Following separation, the Super Heavy booster completed its flip maneuver and initiated the boostback burn before exploding following multiple successive engine failures.[100][101][102] Three and a half minutes into the flight at an altitude of ~90 km over the Gulf of Mexico, blockage in a liquid oxygen filter caused one of the engines to fail in a way that resulted in the destruction of the booster.[103]

IFT-3 launched from the SpaceX Starbase facility along the South Texas coast around 8:25 CDT on March 14, 2024, coincidentally the 22nd anniversary of its founding.[104][105] Like IFT-2, all 33 engines on the booster ignited and stage separation was successful.[106] B10 conducted a boostback burn, however, the planned landing in the Gulf of Mexico was not successful, as it exploded at 462 m (1,516 ft) above the surface.[107]

The fourth integrated flight test of the full Starship configuration launched on 6 June 2024, at 7:50 AM CDT.[108] The goals for the test flight were for the Super Heavy booster to land on a 'virtual tower' in the ocean.[109] Super Heavy achieved a soft splashdown,[110] before being destroyed after tipping over.[111][112]

In April 2024, Musk stated one of the goals was to attempt a booster tower landing based on successful booster performance in flight 4. Vehicle testing commenced in May 2024.[113] SpaceX claimed that B12 and S30 were ready to launch in early August, in advance of regulatory approval.[114] SpaceX flew S30 and B12 on October 13, 2024, with B12 returning to the launch site for a catch.[6]

Planned mission profile

[edit]

Super Heavy and Starship are stacked onto their launch mount and loaded with fuel via the booster quick disconnect (BQD) and ship quick disconnect (SQD) arm. At the T – 19:40 mark, engine chill begins on the booster.[115] This is to protect the engine's turbopumps from thermal shock. At three seconds before launch, the thirty-three engines startup sequence begins.[115]

After liftoff, the engines burn for approximately 159 seconds[116] before Super Heavy cuts off all but three of its center gimbaling rocket engines at an altitude of roughly 64 km (40 mi).[117]: 58  It throttles down the remaining engines, before Starship ignites its engines while still attached to the booster, and separates.[48] The booster then rotates, before igniting ten additional engines for a "boostback burn"[100] which stops all forward velocity. After the boostback burn, the booster's engines shut off with Super Heavy on a trajectory for a controlled descent to the launch site using its grid fins for minor course corrections. After six minutes, shortly before landing,[118] it ignites its inner 13 engines, then shuts off all but the inner 3,[107] to perform a landing burn which slows it sufficiently to be caught by a pair of hydraulic actuating arms attached to the launch tower.[119][120]

Development

[edit]

Ground testing (BN1–B6)

[edit]

BN1

[edit]

BN1 was the first Super-Heavy Booster prototype, a pathfinder that was not intended for flight tests.[80] Sections of the ~66 m (217 ft) tall test article were manufactured throughout autumn 2020. Section stacking began in December 2020.[122] BN1 was fully stacked inside the High Bay on March 18, 2021,[123] and was scrapped on March 30, 2021.

B3

[edit]

Booster 3 completed stacking in the High Bay on June 29, 2021,[124] and moved to the test stand.[125] A cryogenic proof test was completed on July 13,[126][127] followed by a static fire test on July 19. BN3/Booster 3 was partially scrapped on August 15, while the liquid oxygen (LOX) tank remained welded to the Test Stand until January 13, 2022.[128]

B4–B5

[edit]

Booster 4 in the High Bay

B4 was fully stacked on August 1, with all 29 engines installed on August 2, 2021.[129] Grid fins were added to support atmospheric reentry testing. SN20 was stacked on top of Booster 4 on August 6, 2021 for a fitting test, making it, for two years, the tallest rocket ever fully integrated.[86] B4 completed its first cryogenic proof test on December 17, 2021,[130] followed by a pneumatic proof test, another cryogenic proof test and a full-load cryogenic proof test. B4 and Ship 20 were then retired.[127] On March 6, 2024, B4s grid fins were removed,[131] it was moved to the Mega Bay on March 21 where it was scrapped the following day.[132][133]

Parts for B5 were observed as early as July 19, 2021. Stacking for B5 completed in November, although on 8 December, B5 was retired alongside SN15 and SN16. It was later scrapped.

Orbital launches (B7–subsequent)

[edit]

B7–B8

[edit]

B7 was placed on the orbital launch mount on March 31, 2022, and completed two cryogenic proof tests in April, resulting in the rupturing of the downcomer.[134] After being repaired, it was returned to OLM, and completed two cryogenic tests. It was then moved to Mega Bay 1 for engine and grid fin installation.[135] On July 11, after returning to OLM A for engine testing, B7 experienced a detonation underneath the engines during an attempted 33 engine spin prime test.[136] It returned to OLM A on August 4 with only the 20 outer Raptor engines,[137] and completed its first single-engine static fire test on August 9, followed by a second two days later.[138] After receiving its thirteen inner engines,[139] B7 conducted a series of spin prime and static fire tests throughout August and September,[140][141][142][143] before again returning to the Mega Bay on September 21.[144] After receiving additional upgrades it was lifted on the launch pad on October 8.[145] Ship 24 was stacked on top B7 on October 12,[146] and was removed after completing multiple cryogenic load tests.[147][148][149] B7 then completed a spin prime test of multiple engines on November 12,[150] a 14 engine static fire test on November 14,[151] and finally an 11 engine static fire in an autogenous pressurization test on November 29.[152] In January 2023, Booster 7 and Ship 24 conducted a wet dress rehearsal,[153] before attempting a 33 engine static fire on February 9.[154] On April 20, 2023, Booster 7 was launched on Integrated Flight Test 1, being destroyed before stage separation after a fire in the aft section severed connections between its engines and flight computers, resulting in a loss of attitude control and FTS activation.[155]

B8 was fully stacked on July 8, 2022.[156] It was moved to the launch site on September 19, 2022, though it was not tested there.[157] Booster 8 was scrapped in January 2023 in favor of Booster 9. Booster 8's hydraulic power units were used to replace Booster 7s, along with several other parts, including the engine shielding.[158][159]

B9–B12

[edit]

B9 finished stacking in late 2022, and featured upgrades, including electric thrust vector control (ETVC) gimbaling system of the raptor engines, replacing the previous hydraulic power units that were used up to Booster 8. It was moved to the OLS cryogenic station on December 15.[160] Two cryogenic proof tests were conducted on December 21 and December 29, both of which were successful.[160] After engine installation, Booster 9 was rolled to OLM A on July 20,[161] conducting a cryogenic proof test on OLM A,[160] followed by a spin prime test on August 4.[160] On August 6, Booster 9 fired 29 engines for 2.7 seconds, instead of the planned 33 engines for 5 seconds. It was then moved off of OLM A and rolled back to Mega Bay 1, where its vented interstage was added on August 16.[160] B9 was moved back to OLM A on August 22 and underwent another spin prime test the next day.[160] On August 25, Booster 9 underwent a static fire of all 33 engines, with two engines shutting off early, which lasted around 6 seconds.[160] Ship 25 (S25) was lifted onto B9 for the first time on September 5, and was destacked several times throughout the rest of the month and mid October.[160] On October 22, B9 underwent two partial cryogenic tests, while S25 was not tested,[160] followed by a full wet dress rehearsal (WDR) two days later.[160] On November 18, Booster 9 and Ship 25 lifted off with all 33 engines lit at 7:02 am CST.[162] Following the successful separation from S25, B9 was destroyed after several engine failures during the boost-back burn.[162]

Grid fins and corrugation on Booster 10's methane tank (right, foreground), March 12, 2023

B10 was fully stacked in March 2023.[54] B10 was moved to Massey's test site for cryogenic testing on July 7, undergoing a cryogenic proof test on July 18.[54] Three additional cryogenic tests were performed in mid September.[54] B10 was moved back to Mega Bay 1 on September 19 for engine and interstage installation.[54] On December 18, B10 was moved to the orbital launch site,[54] followed by a lift onto OLM A the next day.[54] It aborted a static fire test on December 21, before completing a 33-engine static fire test on December 29, followed by its removal from OLM A on December 30.[54] On January 2, 2024, B10 was moved back to the Production Site,[54] and was transported to the Orbital Launch Site for a WDR.[54] On February 9, B10 was lifted onto OLM A,[54] and on February 10, Ship 28 (S28) was lifted onto B10,[54] with the combined vehicle aborting two wet dress rehearsal attempts.[54] The wet dress rehearshal was completed on March 3.[54] The vehicles were destacked for FTS arming on March 5,[54] which occurred on March 8,[54] followed by S28 being restacked on March 10.[54] On March 14, B10 was launched with S28 on IFT-3, completing the ascent burn with zero engine failures. Six engines failed during the boostback burn.[163] During its landing burn, only three engines started up with two failing shortly thereafter.[164]

B11 was fully stacked in June 2023.[165] On October 12, B11 was moved to Massey's test site, where it was cryo-tested on October 14 and October 18.[166] On November 19, B11 was moved back to Mega Bay 1 for engine and interstage installation.[166] B11 was moved to OLM A for static-fire testing on April 4,[166] where it conducted a 33-engine static-fire on April 5.[167] On April 7, it was removed from OLM A,[166] and rolled back to Mega Bay 1 for pre-flight modifications.[166] On May 10, B11 was rolled out of Mega Bay 1,[166] and rolled to the Orbital Launch Site.[168] It was lifted onto the OLM on May 11.[169] On May 15, Ship 29 (S29) was lifted onto B11, with the combined vehicle completing a partial cryogenic test on May 16,[170] and a full wet dress rehearsal on May 20,[171] A second wet dress rehearsal was completed on May 28.[172] On May 29, S29 was destacked for final tile work and Flight Termination System (FTS) Installation,[166] with FTS installation occurring on May 30.[166] S29 was stacked onto B11 for the final time on June 5.[166] On June 6, B11 and S29 launched on IFT-4, with a single engine failure occurring shortly after liftoff.[173] The boostback burn saw no engine failures, though a second engine failed during the landing burn.[173] B11 was destroyed after tipping over, with several components being recovered in late September.[174][175] On October 9, Vice President of Build and Flight Reliability of SpaceX, Bill Gerstenmaier, claimed that B11 landed within "half a centimeter" of the target.[176]

Booster 12 coasting back to the launch site after separating from Ship 30 during IFT-5

B12 began assembly in June 2023.[165] On December 28, 2023, B12 was moved to Massey's for cryogenic testing, where it conducted two cryogenic tests on January 10 and January 12.[177] B12 was moved production site in mid-January for engine installation.[178] B12 was moved to OLM A on July 9 for static fire testing,[179] where it conducted a pressurization test on July 11,[177] followed by a 33 engine spin prime on July 12 and a 33 engine static fire on July 15.[180][181] B12 was rolled back to the production site on July 16, 2024.[182] SpaceX claimed that B12 and S30 were ready to fly on August 8.[183] On September 20, B12 was rolled to the launch site, with S30 being lifted onto B12 the next day.[184] A partial wet dress rehearsal was conducted on September 23.[185] A second partial wet dress rehearsal occurred on October 7,[186] followed by S30 being destacked for FTS installation.[187] FTS was installed on both vehicles on October 9,[188] and S30 was stacked onto B12 for Flight 5 on October 11.[177] B12 and S30 launched on October 13, with B12 successfully conducting the ascent, boostback, and landing burns with no engine failures, before being caught by the gantry chopsticks,[6] and lowered onto OLM A.[189] Musk claimed that B12 suffered damage that could be "easily addressed", including warping of the outer engine nozzles.[190] B12's FTS was removed on October 14,[191] followed by being returned to Mega Bay 1 for post-flight inspections.[192] On October 22, B12s vented interstage was recovered.[193] B12 was retired to the rocket garden on October 28.[194]

B13–B16

[edit]

B13's assembly was completed on February 3, 2024.[195] It was rolled to Massey's test site for cryogenic testing on April 25.[196] B13 completed its first cryo-test on April 26,[197] and a second cryogenic test on April 29.[198] On October 22, B13 was rolled to OLM A,[22] where a partial cryogenic test was performed two days later.[199] Following this, B13 conducted a static fire,[199] and was subsequently rolled to Mega Bay 1.[200]

On May 11, 2024, SpaceX released an image showing that B14 had been assembled.[201] B14 was rolled out of Mega Bay 1 on October 2, ahead of a rollout to Massey's the next day.[202] On October 4, B14 conducted its first cyrogenic test,[203] followed by a second on October 5.[204] It was then moved to Mega Bay 1 on October 7.[205]

On July 23, 2024, B15's aft section was spotted with additional tanks attached to the liquid oxygen header tank.[20]

On October 14, 2024, the first section for B16 was spotted being moved around Starfactory.[206] Stacking began in late October.[207]

Test articles

[edit]

Super Heavy-based test articles

[edit]

BN2.1 was rolled out on June 3, 2021[212] for cryogenic tests. It conducted two tests, the first on June 8, 2021,[213] and the second on June 17, 2021.[214]

B2.1 (not BN2.1) conducted three cryogenic tests on December 1, 2021, December 2, 2021, and December 3, 2021.[215][216]

B6.1 was originally intended to be the third flight-worthy Super Heavy, but was repurposed as a test tank.[217] In May 2023, it was used to test the modified FTS system, after the FTS on B7 and S24 failed to destroy the vehicle.[218]

Liquid Oxygen Landing Test Tank (LOX LTT) was based on the LOX Landing tank on the Booster. It was cryogenically proof tested at Mcgregor in early 2022.[17]

B7.1 was first cryogenically proof tested on 28 June 2022,[219] and tested again on 19 July 2022.[220] During a suspected pressurize to failure test two days later, it received minor damage.[221] After repairs, it underwent a fourth cryogenic proof test on July 27, 2022, a fifth on September 1, 2022, and a sixth five days later.[222] It then rolled back to the production site on September 16, 2022.[223] B7.1 was then moved to the Massey's test site in September 2022, and then scrapped in December 2023.[224]

Hot Stage Load Head (HSLH) was a test article designed to verify the structural integrity of the interstage of Super Heavy Boosters 9+.[225] It was transported to the Massey's test site on July 30, 2023,[226] before being loaded onto the Can Crusher stress testing device.[227] In mid-October 2023, it was moved back to the production site,[228] where it was disassembled.[229]

B14.1 is a test article consisting of a booster common dome and a forward section.[230] After structural testing at Masseys, it was moved to the launch site on June 21, 2024,[231] and lifted onto OLM A.[232] It was tested on June 26,[210] followed by additional testing on June 27.[233] It conducted additional testing on August 15.[234] On August 17, it was returned to the production site.[211]

General test articles

[edit]


Test Tank 1 (TT1) was a subscale test tank consisting of two forward bulkheads connected by a small barrel section. TT1 was used to test new materials and construction methods. On January 10, 2020, TT1 was stress tested to failure as part of an ambient temperature test, reaching a pressure of 7.1 bar (103 psi).[235][237]

Test Tank 2 (TT2) was another subscale test tank similar to TT1. On January 27, 2020, TT2 underwent an ambient temperature pressure test where it reached a pressure of 7.5 bar (109 psi) before a leak occurred.[238] Two days later, it underwent a cryogenic proof test to destruction, bursting at 8.5 bar (123 psi).[239][236][240]

GSE 4.1 was first spotted in August 2021 and was the first ground support equipment (GSE) test tank built, made from parts of GSE 4.[222] It underwent a cryogenic proof test in August 2021 before it was rolled to the Sanchez site.[241] It was rolled back to the launch site in November 2021, where it underwent an apparent cryogenic proof test to failure on January 18, 2022, where it burst at an unknown pressure.[242]

EDOME was a test tank created to test flatter domes, possibly used on future Starship prototypes. It was moved to the launch site in July 2022, and then back to the production site the next month, after undergoing no tests.[217] It was later moved from the production site to the Massey's test site in late September 2022, where it was damaged during a cryogenic pressure test to failure.[217] After repairs, it was tested to destruction in late October 2022.[217]

EDOME 2 was a test tank which is likely designed to continue testing a flatter dome design. As of October 4, 2023, its official designation is unknown. It was tested once, before being scrapped for unknown reasons.[243]

See also

[edit]

Notes

[edit]
  1. ^ 78% of 3,400 t (7,500,000 lb) is 2,700 t (6,000,000 lb) of liquid oxygen.
  2. ^ This is based on the dimensions of the ring and 304L stainless steel's density of 7.93 g/cm3.[1]

References

[edit]
  1. ^ Berger, Eric (April 8, 2024). "Elon Musk just gave another Mars speech—this time the vision seems tangible". Ars Technica. Retrieved November 2, 2024.
  2. ^ "SpaceX". SpaceX. Archived from the original on March 7, 2011. Retrieved May 31, 2023.
  3. ^ Berger, Eric (April 8, 2024). "Elon Musk just gave another Mars speech—this time the vision seems tangible". Ars Technica. Retrieved November 2, 2024.
  4. ^ a b c Weitering, Hanneke (September 27, 2016). "SpaceX's Interplanetary Transport System for Mars Colonization in Images". Space.com. Archived from the original on April 20, 2021. Retrieved November 14, 2023.
  5. ^ a b Foust, Jeff (September 29, 2017). "Musk unveils revised version of giant interplanetary launch system". SpaceNews. Archived from the original on October 8, 2017. Retrieved October 1, 2017.
  6. ^ a b c NASASpaceflight (October 11, 2024). SpaceX Launches Starship for the Fifth Time (and Tries to Catch a Booster). Retrieved October 13, 2024 – via YouTube.
  7. ^ a b c Wattles, Jackie; Strickland, Ashley (April 20, 2023). "SpaceX's Starship rocket lifts off for inaugural test flight, but explodes midair". CNN. Archived from the original on April 21, 2023. Retrieved April 27, 2023.
  8. ^ Berger, Eric (April 8, 2024). "Elon Musk just gave another Mars speech—this time the vision seems tangible". Ars Technica. Retrieved November 2, 2024.
  9. ^ Dvorsky, George (August 6, 2021). "SpaceX Starship Stacking Produces the Tallest Rocket Ever Built". Gizmodo. Archived from the original on January 11, 2022. Retrieved January 11, 2022.
  10. ^ a b c Sesnic, Trevor (August 11, 2021). "Starbase Tour and Interview with Elon Musk". The Everyday Astronaut (Interview). Archived from the original on August 12, 2021. Retrieved October 12, 2021.
  11. ^ a b @NicAnsuini (December 7, 2021). "Booster 6 common dome makes yet another mysterious appearance" (Tweet). Archived from the original on November 22, 2023. Retrieved November 21, 2023 – via Twitter.
  12. ^ "Stacking Diagrams". ringwatchers.com. Archived from the original on December 11, 2023. Retrieved November 21, 2023.
  13. ^ a b c d e Jax (January 13, 2024). "Time for Round 3: What's New on Starship 28 & Booster 10?". Ringwatchers. Retrieved October 18, 2024.
  14. ^ a b memereview (April 4, 2024). "Building Upon Accomplishments: What's New on Starship 29 & Booster 11?". Ringwatchers. Retrieved October 18, 2024.
  15. ^ "SpaceX". SpaceX. Archived from the original on March 7, 2011. Retrieved May 31, 2023.
  16. ^ Jax (April 5, 2023). "Eye in the Sky: Starship's Onboard Cameras". Ringwatchers. Retrieved October 18, 2024.
  17. ^ a b Jax (December 16, 2023). "Feeding The Beast: Super Heavy's Propellant Distribution System". Ringwatchers. Archived from the original on February 6, 2024. Retrieved May 20, 2024.
  18. ^ a b c d e f g Jax (July 6, 2024). "Cleaning up the Design: Comparing Super Heavy's Propellant Distribution Systems". Ringwatchers. Retrieved October 18, 2024.
  19. ^ a b c d Jax (December 16, 2023). "Feeding The Beast: Super Heavy's Propellant Distribution System". Ringwatchers. Retrieved October 18, 2024.
  20. ^ a b Golden, Zack [@csi_starbase] (July 23, 2024). "First upgraded aft section spotted for Booster 15! Internal COPVs for the landing tank are a very interesting upgrade" (Tweet). Retrieved July 24, 2024 – via Twitter.
  21. ^ CSI Starbase (August 31, 2024). How SpaceX Solved Superheavy's Major Fuel Contamination Problem. Retrieved October 22, 2024 – via YouTube.
  22. ^ a b NASASpaceflight (October 22, 2024). SpaceX Rolls Booster 13 to the Launch Site | Starbase. Retrieved October 22, 2024 – via YouTube.
  23. ^ Beyer, Jack (March 31, 2022). "How SpaceX is Rapidly Iterating Starship". NASAspaceflight. Archived from the original on April 26, 2023. Retrieved April 26, 2023.
  24. ^ a b c d Jax (May 12, 2023). "Through The Fire And Flames: Booster Engine Shielding". Ringwatchers. Retrieved October 18, 2024.
  25. ^ @elonmusk (July 4, 2021). "Booster engines are not shrouded by skirt extension, as with ship. Engines extend about 3m below booster" (Tweet) – via Twitter.
  26. ^ Bergin, Chris (July 19, 2021). "Super Heavy Booster 3 fires up for the first time". NASASpaceflight. Archived from the original on August 12, 2021. Retrieved April 26, 2023.
  27. ^ Weber, Ryan (October 12, 2024). "SpaceX Catches a Super Heavy Booster During a Milestone Flight 5". NASASpaceFlight.com. Retrieved October 18, 2024.
  28. ^ a b Jax (November 24, 2023). "A Major Improvement: What Changed on Starship 25 & Booster 9?". Ringwatchers. Retrieved October 18, 2024.
  29. ^ a b c Jax (September 15, 2023). "Calming the Flames: Super Heavy's Engine Purging". Ringwatchers. Retrieved October 18, 2024.
  30. ^ "SpaceX's Mars rocket to be methane-fuelled". October 30, 2013. Archived from the original on October 30, 2013. Retrieved November 21, 2023.
  31. ^ "SpaceX's new test rocket briefly hovers during first free flight – The Verge". July 26, 2019. Archived from the original on July 26, 2019. Retrieved November 21, 2023.
  32. ^ Bergin, Chris (March 7, 2014). "SpaceX advances drive for Mars rocket via Raptor power". NASASpaceFlight.com. Archived from the original on March 7, 2014. Retrieved November 21, 2023.
  33. ^ "Starship Service to Earth Orbit, Moon, Mars and Beyond". SpaceX. October 17, 2024. Retrieved October 17, 2024.
  34. ^ a b Berger, Eric (April 8, 2024). "Elon Musk just gave another Mars speech—this time the vision seems tangible". Ars Technica. Retrieved June 16, 2024.
  35. ^ Thorne, Muriel, ed. (May 1983). NASA, The First 25 Years: 1958-1983 (PDF). Washington, D.C.: National Aeronautics and Space Administration. p. 69.
  36. ^ "FAA SpaceX SSH LC-39A Fact Sheets Combined". Federal Aviation Administration. June 11, 2024. Retrieved June 11, 2024.
  37. ^ Starship’s 33 Engines Created The Mother Of All ‘Shock Diamonds’
  38. ^ a b c Jax (November 24, 2023). "A Major Improvement: What Changed on Starship 25 & Booster 9?". Ringwatchers. Archived from the original on February 7, 2024. Retrieved February 7, 2024.
  39. ^ Jax (January 13, 2024). "Time for Round 3: What's New on Starship 28 & Booster 10?". Ringwatchers. Archived from the original on February 7, 2024. Retrieved February 7, 2024.
  40. ^ Sesnic, Trevor (August 11, 2021). "Starbase Tour and Interview with Elon Musk". Everyday Astronaut. Archived from the original on May 23, 2023. Retrieved November 25, 2023.
  41. ^ @elonmusk (June 25, 2017). "Flying with larger & significantly upgraded hypersonic grid fins. Single piece cast & cut titanium. Can take reentry heat with no shielding" (Tweet). Retrieved November 30, 2023 – via Twitter.
  42. ^ a b Jax (April 9, 2023). "Not Folding Under Pressure: Super Heavy's Grid Fins". Ringwatchers. Archived from the original on November 21, 2023. Retrieved November 21, 2023. An archived version of @RingWatchers (April 9, 2023). "Superheavy's grid fins are a key part of the vehicle's recovery hardware, but the perpetually extended state looks quite different compared to Falcon 9. Let's take a look at how these grid fins work and why they can stay extended at all times. (1/10)" (Tweet) – via Twitter.
  43. ^ Weber, Ryan (October 31, 2021). "Major elements of Starship Orbital Launch Pad in place as launch readiness draws nearer". NASASpaceflight. Archived from the original on December 5, 2021. Retrieved December 19, 2021.
  44. ^ Booster 7 Back At The Pad With 33 Engines For Testing, August 24, 2022, archived from the original on April 30, 2023, retrieved August 24, 2022.
  45. ^ NASASpaceflight (October 11, 2024). SpaceX Launches Starship for the Fifth Time (and Tries to Catch a Booster). Retrieved October 13, 2024 – via YouTube.
  46. ^ a b Wang, Brian (February 15, 2020). "SpaceX Super Heavy Starship Construction and Weight". Nextbigfuture. Archived from the original on December 4, 2023. Retrieved December 3, 2023.
  47. ^ a b Wall, Mike (August 18, 2023). "SpaceX shows off newly modified Starship Super Heavy booster (photos)". Space.com. Archived from the original on August 19, 2023. Retrieved November 22, 2023.
  48. ^ a b c Skibba, Ramin (November 21, 2023). "Here's What's Next for SpaceX's Starship". WIRED. ISSN 1059-1028. Archived from the original on November 25, 2023. Retrieved November 25, 2023.
  49. ^ a b c Bergin, Chris [@nasaspaceflight] (June 24, 2023). "Elon says there's a much higher chance of getting to orbit with the second test flight due to vast amount of mods" (Tweet) – via Twitter. Ship engines will fire up before all the Booster engines shut down. Now need vents for hot staging. Adding an extension to the booster that is all vent and more shielding to the top of the booster. It's the most risky thing for the next flight.
  50. ^ a b "STARSHIP'S FOURTH FLIGHT TEST". SpaceX. June 18, 2024. Retrieved June 18, 2024.
  51. ^ memereview (October 13, 2024). "Flight 5, Super Heavy's Return Home: The Complete History of S30 & B12". Ringwatchers. Retrieved November 4, 2024.
  52. ^ a b c d e f g h i j k l m n o p q r s Building SpaceX's Starship Super Heavy One Ring At A Time., June 2023, archived from the original on December 13, 2023, retrieved February 14, 2024.
  53. ^ Jax (November 24, 2023). "A Major Improvement: What Changed on Starship 25 & Booster 9?". Ringwatchers. Archived from the original on November 25, 2023. Retrieved November 25, 2023.
  54. ^ a b c d e f g h i j k l m n o p q memereview (March 13, 2024). "Onward to Flight 3: The Complete History of S28 & B10". Ringwatchers. Retrieved March 18, 2024.
  55. ^ a b c Rosenberg, Zach (October 15, 2012). "SpaceX aims big with massive new rocket". Flight Global. Archived from the original on July 3, 2015. Retrieved September 25, 2016.
  56. ^ a b Belluscio, Alejandro G. (March 7, 2014). "SpaceX advances drive for Mars rocket via Raptor power". NASASpaceFlight.com. Archived from the original on September 11, 2015. Retrieved September 25, 2016.
  57. ^ Nellis, Stephen (February 19, 2014). "SpaceX's propulsion chief elevates crowd in Santa Barbara". Pacific Coast Business Times. Archived from the original on September 26, 2016. Retrieved September 25, 2016.
  58. ^ Foust, Jeff (September 27, 2016). "SpaceX's Mars plans call for massive 42-engine reusable rocket". SpaceNews. Archived from the original on March 16, 2022. Retrieved March 16, 2022.
  59. ^ Chang, Kenneth (September 27, 2016). "Elon Musk's Plan: Get Humans to Mars, and Beyond". The New York Times. Archived from the original on December 14, 2021. Retrieved December 16, 2021.
  60. ^ a b c Bergin, Chris (September 27, 2016). "SpaceX reveals ITS Mars game changer via colonization plan". NASASpaceFlight.com. Archived from the original on September 28, 2016. Retrieved September 27, 2016.
  61. ^ a b c d e f Richardson, Derek (September 27, 2016). "Elon Musk Shows Off Interplanetary Transport System". Spaceflight Insider. Archived from the original on October 1, 2016. Retrieved October 3, 2016.
  62. ^ Belluscio, Alejandro G. (October 3, 2016). "ITS Propulsion – The evolution of the SpaceX Raptor engine". NASASpaceFlight.com. Archived from the original on November 22, 2018. Retrieved October 3, 2016.
  63. ^ Berger, Eric (September 28, 2016). "Musk's Mars moment: Audacity, madness, brilliance—or maybe all three". Ars Technica. Archived from the original on October 13, 2016. Retrieved October 13, 2016.
  64. ^ a b Boyle, Alan (October 23, 2016). "SpaceX's Elon Musk geeks out over Mars interplanetary transport plan on Reddit". GeekWire. Archived from the original on October 24, 2016. Retrieved October 24, 2016.
  65. ^ Making Life Multiplanetary. SpaceX. September 29, 2017. Archived from the original on August 19, 2021. Retrieved August 22, 2021 – via YouTube.
  66. ^ Heath, Chris (December 12, 2015). "How Elon Musk Plans on Reinventing the World (and Mars)". GQ. Archived from the original on December 12, 2015. Retrieved September 25, 2016.
  67. ^ Musk, Elon (March 1, 2018). "Making Life Multi-Planetary". New Space. 6 (1): 2–11. Bibcode:2018NewSp...6....2M. doi:10.1089/space.2018.29013.emu.
  68. ^ a b Foust, Jeff (December 24, 2018). "Musk teases new details about redesigned next-generation launch system". SpaceNews. Archived from the original on December 25, 2018. Retrieved December 10, 2023.
  69. ^ Coldewey, Devin (December 26, 2018). "SpaceX's Starship goes sci-fi shiny with stainless steel skin". TechCrunch. Archived from the original on February 2, 2023. Retrieved December 10, 2023.
  70. ^ a b Chang, Kenneth (September 29, 2019). "SpaceX Unveils Silvery Vision to Mars: 'It's an I.C.B.M. That Lands'". The New York Times. Archived from the original on October 30, 2021. Retrieved December 16, 2021.
  71. ^ Cotton, Ethan (August 2, 2020). "Starship SN-5 | 150 meter hop". Everyday Astronaut. Archived from the original on December 10, 2023. Retrieved December 10, 2023.
  72. ^ D'Agostino, Ryan (January 22, 2019). "Elon Musk: Why I'm Building the Starship out of Stainless Steel". popularmechanics.com. Popular Mechanics. Archived from the original on January 22, 2019. Retrieved January 22, 2019.
  73. ^ "Starship". SpaceX. Archived from the original on September 30, 2019. Retrieved September 30, 2019.
  74. ^ "Starship Users Guide, Revision 1.0, March 2020" (PDF). SpaceX. March 2020. Archived (PDF) from the original on April 2, 2020. Retrieved May 18, 2020. SpaceX's Starship system represents a fully reusable transportation system designed to service Earth orbit needs as well as missions to the Moon and Mars. This two-stage vehicle – composed of the Super Heavy rocket (booster) and Starship (spacecraft)
  75. ^ Berger, Eric (March 5, 2020). "Inside Elon Musk's plan to build one Starship a week and settle Mars". Ars Technica. Archived from the original on March 5, 2020. Retrieved March 6, 2020. Musk tackles the hardest engineering problems first. For Mars, there will be so many logistical things to make it all work, from power on the surface to scratching out a living to adapting to its extreme climate. But Musk believes that the initial, hardest step is building a reusable, orbital Starship to get people and tons of stuff to Mars. So he is focused on that.
  76. ^ Berger, Eric (September 29, 2019). "Elon Musk, Man of Steel, reveals his stainless Starship". Ars Technica. Archived from the original on December 28, 2019. Retrieved September 30, 2019.
  77. ^ "Elon Musk Reveals SpaceX's New Starship, the Rocket Bound for Mars". Popular Mechanics. September 29, 2019. Archived from the original on May 19, 2023. Retrieved November 27, 2023.
  78. ^ Williams, Matt (September 29, 2019). "Musk Presents the Orbital Starship Prototype. Flights will Begin in Six Months". Universe Today. Archived from the original on January 31, 2023. Retrieved November 27, 2023.
  79. ^ Foust, Jeff (September 27, 2019). "SpaceX to update Starship progress". SpaceNews. Retrieved November 27, 2023.
  80. ^ a b Musk, Elon [@elonmusk] (March 18, 2021). "Yes, Booster 1 is a production pathfinder, figuring out how to build & transport 69-meter-tall stage. Booster 2 will fly" (Tweet) – via Twitter.
  81. ^ Musk, Elon [@elonmusk] (March 30, 2021). "BN1 is a manufacturing pathfinder, so will be scrapped. We learned a lot, but have already changed design to BN2. The goal is to get BN2 with engines on an orbital pad before the end of April. It might even be orbit-capable if we are lucky" (Tweet) – via Twitter.
  82. ^ Super Heavy Booster 3 Stacked | SpaceX Boca Chica. NASASpaceflight. June 29, 2021. Archived from the original on July 11, 2021. Retrieved August 22, 2021 – via YouTube.
  83. ^ "SpaceX test fires massive Super Heavy booster for Starship for 1st time". Space.com. July 19, 2021. Archived from the original on August 3, 2021. Retrieved April 26, 2023.
  84. ^ a b Booster 3 Scrapped (YouTube). August 15, 2021.
  85. ^ Super Heavy Booster 3's LOX Tank Finally Scrapped | SpaceX Boca Chica, January 10, 2022, archived from the original on April 11, 2023, retrieved August 11, 2022.
  86. ^ a b Cao, Sissi (August 6, 2021). "Starship Completes Stacking Giant Starship Stages For Orbital Flight". Observer. Archived from the original on April 8, 2023. Retrieved November 19, 2021.
  87. ^ @NASASpaceflight (December 17, 2021). "And there's some impressive depress venting on Booster 4! A possible conclusion to a good cryogenic pressure test!" (Tweet) – via Twitter.
  88. ^ Kshatriya, Amit; Kirasich, Mark (October 31, 2022). "Artemis I – IV Mission Overview / Status" (PDF). NASA. Human Exploration and Operations Committee of the NASA Advisory Council. Archived (PDF) from the original on November 3, 2022. Retrieved December 10, 2022.
  89. ^ Iemole, Anthony (December 7, 2022). "Boosters 7 and 9 in dual flow toward Starbase test milestones". NASASpaceFlight.com. Archived from the original on December 10, 2022. Retrieved December 10, 2022.
  90. ^ SpaceX Booster 7 Experiences Explosion, July 11, 2022, archived from the original on July 11, 2022, retrieved July 18, 2022.
  91. ^ Wall, Mike (April 17, 2023). "SpaceX scrubs 1st space launch of giant Starship rocket due to fueling issue". Space.com. Archived from the original on April 17, 2023. Retrieved April 20, 2023.
  92. ^ a b Bergin, Chris (May 3, 2023). "Elon Musk pushes for orbital goal following data gathering objectives during Starship debut". NASASpaceFlight.com. Archived from the original on May 5, 2023. Retrieved May 5, 2023.
  93. ^ "SpaceX". SpaceX. Archived from the original on April 14, 2023. Retrieved April 20, 2023.
  94. ^ Klotz, Irene (May 1, 2023). "Engine Issue Felled SpaceX First Super Heavy | Aviation Week Network". Aviation Week Network. Archived from the original on February 23, 2024. Retrieved May 4, 2023.
  95. ^ Salinas, Sara (April 20, 2023). "SpaceX launches towering Starship rocket but suffers mid-flight failure". CNBC. Archived from the original on April 20, 2023. Retrieved April 20, 2023.
  96. ^ Kolodny, Lora (July 28, 2023). "SpaceX hasn't obtained environmental permits for 'flame deflector' system it's testing in Texas". CNBC. Archived from the original on October 7, 2023. Retrieved September 1, 2023.
  97. ^ Romera, Alejandro Alcantarilla (August 23, 2023). "Booster 9 conducts pre-flight static fire test". NASASpaceFlight.com. Archived from the original on August 25, 2023. Retrieved November 21, 2023.
  98. ^ Romera, Alejandro Alcantarilla (June 21, 2023). "Ship 25 begins engine testing as Starship launch pad work continues". NASASpaceFlight.com. Archived from the original on July 5, 2023. Retrieved November 21, 2023.
  99. ^ Harwood, William. "Super Heavy-Starship climbs high but falls short on second test flight – Spaceflight Now". Archived from the original on November 18, 2023. Retrieved November 23, 2023.
  100. ^ a b c "SpaceX – Launches". November 21, 2023. Archived from the original on November 21, 2023. Retrieved November 21, 2023.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  101. ^ "SpaceX launches its giant new rocket but a pair of explosions ends the second test flight". AP News. November 18, 2023. Archived from the original on November 20, 2023. Retrieved November 18, 2023.
  102. ^ Skipper, Joe; Roulette, Joey; Gorman, Steve (November 18, 2023). Dunham, Will; Russell, Ros; Craft, Diane (eds.). "SpaceX Starship launch presumed failed minutes after reaching space". Reuters. Archived from the original on November 23, 2023. Retrieved November 18, 2023.
  103. ^ Berger, Eric (February 26, 2024). "SpaceX discloses cause of Starship anomalies as it clears an FAA hurdle". Archived from the original on March 14, 2024. Retrieved March 14, 2024.
  104. ^ "SpaceX reveals anticipated date for third Starship flight". Digital Trends. January 10, 2024. Archived from the original on January 11, 2024. Retrieved April 18, 2024.
  105. ^ Weber, Ryan (December 14, 2023). "SpaceX Pushes Ahead to Flight 3 with the Rollout of Ship 28". NASASpaceFlight.com. Archived from the original on December 31, 2023. Retrieved April 18, 2024.
  106. ^ SpaceX Launches Third Starship Flight Test, March 14, 2024, archived from the original on March 14, 2024, retrieved March 14, 2024
  107. ^ a b "Starship's Third Flight Test". SpaceX. Archived from the original on March 6, 2024. Retrieved March 7, 2024.
  108. ^ "Live updates: SpaceX to launch its Starship megarocket on a test flight to orbit". NBC News. June 6, 2024. Retrieved June 6, 2024.
  109. ^ Davenport, Justin (April 19, 2024). "As IFT-4 prepares for launch, Starship's future is coming into focus". NASASpaceFlight.com. Archived from the original on April 20, 2024. Retrieved April 20, 2024.
  110. ^ SpaceX [@SpaceX] (June 6, 2024). "Splashdown confirmed! Congratulations to the entire SpaceX team on an exciting fourth flight test of Starship!" (Tweet). Retrieved June 16, 2024 – via Twitter.
  111. ^ CSI Starbase (September 22, 2024). Q&A with CSI Starbase | Fire and Ice Review. Retrieved September 23, 2024 – via YouTube.
  112. ^ Musk, Elon [@elonmusk] (September 22, 2024). "Starship Super Heavy Booster Flight 4" (Tweet). Retrieved September 22, 2024 – via Twitter.
  113. ^ Musk, Elon [@elonmusk] (April 5, 2024). "Flight 4 next month" (Tweet). Retrieved June 16, 2024 – via Twitter.
  114. ^ Wall, Mike (August 9, 2024). "Starship is ready for its 5th test flight, SpaceX says (photos)". Space.com. Retrieved August 12, 2024.
  115. ^ a b What to Expect for SpaceX Starship's Second Flight Test (Countdown & Trajectory), November 9, 2023, archived from the original on November 21, 2023, retrieved November 21, 2023.
  116. ^ Moon, Mariella (February 11, 2022). "SpaceX shows what a Starship launch would look like". Engadget. Archived from the original on March 31, 2022. Retrieved March 31, 2022.
  117. ^ "WRITTEN RE-EVALUATION OF THE 2022 FINAL PROGRAMMATIC ENVIRONMENTAL ASSESSMENT FOR THE SPACE X STARSHIP /SUPER HEAVY LAUNCH VEHICLE PROGRAM AT THE BOCA CHICA LAUNCH SITE IN CAMERON COUNTY , TEXAS". Federal Aviation Administration. 2022. Archived from the original on December 1, 2023. Retrieved December 9, 2023.
  118. ^ Clark, Stephen (January 5, 2024). "Rocket Report: SpaceX's record year; Firefly's Alpha rocket falls short". Ars Technica. Archived from the original on January 5, 2024. Retrieved January 5, 2024.
  119. ^ "Musk hopes "Mechazilla" will catch and assemble the Starship and Super Heavy boosters for rapid reuse". Archived from the original on May 14, 2024. Retrieved May 14, 2024.
  120. ^ Cuthbertson, Anthony (August 30, 2021). "SpaceX will use 'robot chopsticks' to catch massive rocket, Elon Musk says". The Independent. Archived from the original on June 22, 2022. Retrieved June 22, 2022.
  121. ^ "Starship SN15 to undergo flight test Tuesday". May 4, 2021. Archived from the original on May 7, 2021. Retrieved May 6, 2023. BN1 has since been cut into sections and sent to the scrapyard
  122. ^ Bergin, Chris (December 28, 2020). "Starship SN9's time to shine – test series targets a New Year's resolution". NASASpaceflight. Archived from the original on April 17, 2023. Retrieved December 29, 2020.
  123. ^ Mary [@BocaChicaGal] (March 18, 2021). "Booster BN1 is fully stacked in the high bay" (Tweet) – via Twitter.
  124. ^ Super Heavy Booster 3 Stacked | SpaceX Boca Chica. NASASpaceflight. June 29, 2021. Archived from the original on July 11, 2021. Retrieved August 22, 2021 – via YouTube.
  125. ^ "SpaceX Transports A Super Heavy Booster Prototype To The Launch Pad". Tesmanian.com. Archived from the original on April 15, 2023. Retrieved July 1, 2021.
  126. ^ @elonmusk (June 30, 2021). "First one to fly will [have grid fins], so Booster 4. Booster 3 will be used for ground tests. We're changing much of the design from 3 to 4. Booster 3 was very hard to build. Expect rapid evolution in the first ~10 boosters & first ~30 ships" (Tweet) – via Twitter.
  127. ^ a b @elonmusk (June 25, 2021). "We're almost done with first prototype booster. This will go to test stand A. The next one will fly to orbit. The team has been crushing it many days & nights in a row!" (Tweet) – via Twitter.
  128. ^ Super Heavy Booster 3's LOX Tank Finally Scrapped | SpaceX Boca Chica, January 10, 2022, archived from the original on April 11, 2023, retrieved August 11, 2022.
  129. ^ @elonmusk (July 11, 2021). "Final decision made earlier this week on booster engine count. Will be 33 at ~230 (half million lbs) sea-level thrust" (Tweet) – via Twitter.
  130. ^ @NASASpaceflight (December 17, 2021). "And there's some impressive depress venting on Booster 4! A possible conclusion to a good cryogenic pressure test!" (Tweet) – via Twitter.
  131. ^ Cargile, John [@GroundTruthPics] (March 6, 2024). "Booster 4 is having it's[sic] grid fins removed" (Tweet). Retrieved March 6, 2024 – via Twitter.
  132. ^ 4K SpaceX Starbase Booster 4 Final Move to Megabay 1 on 3/21/24, March 21, 2024, retrieved March 22, 2024
  133. ^ Bergin, Chris [@nasaspaceflight] (March 22, 2024). "Booster 4 is being cut in half inside the Mega Bay" (Tweet). Retrieved March 22, 2024 – via Twitter.
  134. ^ CSI Starbase (March 22, 2023). Why SpaceX Could Be Forced To Abandon Starship Payloads Until 2024!. Retrieved October 22, 2024 – via YouTube.
  135. ^ NASASpaceflight (March 31, 2022). How SpaceX is Rapidly Iterating Starship. Retrieved May 31, 2024 – via YouTube.
  136. ^ SpaceX Booster 7 Experiences Explosion, July 11, 2022, archived from the original on July 11, 2022, retrieved July 18, 2022.
  137. ^ Chopsticks Break Down Before Lifting Booster 7 | SpaceX Boca Chica, August 8, 2022, archived from the original on April 17, 2023, retrieved August 11, 2022.
  138. ^ @spacex (August 11, 2022). "Full duration 20-second static fire of Super Heavy Booster 7" (Tweet). Retrieved August 11, 2022 – via Twitter.
  139. ^ @elonmusk (August 13, 2022). "Adding the 13 inner engines" (Tweet). Retrieved August 13, 2022 – via Twitter.
  140. ^ @thejackbeyer (August 26, 2022). "Booster 7 and Ship 24 both underwent Raptor engine spin prime testing. Also, F-22 Raptor Fighter Jets were spotted flying over Starbase in preparation for an airshow later in the week" (Tweet). Retrieved August 28, 2022 – via Twitter.
  141. ^ Starship Testing Causes Grass Fire | SpaceX Boca Chica, September 9, 2022, archived from the original on April 7, 2023, retrieved September 21, 2022.
  142. ^ Starship 25 Nosecone Stacked and Booster 7 Spin Prime Testing | SpaceX Boca Chica, September 14, 2022, archived from the original on April 7, 2023, retrieved September 21, 2022.
  143. ^ Booster 8 Rolled Out to the Launch Site for Testing | SpaceX Boca Chica, September 21, 2022, archived from the original on August 11, 2023, retrieved September 21, 2022.
  144. ^ Booster 7 Lifted Off the Orbital Launch Mount (and rolled back) | SpaceX Boca Chica, September 22, 2022, archived from the original on April 23, 2023, retrieved October 12, 2022.
  145. ^ Booster 7 Rolled Out for Launch (we hope) | SpaceX Boca Chica, October 8, 2022, archived from the original on April 7, 2023, retrieved October 12, 2022.
  146. ^ Ship 24 Stacked Onto Booster 7 | SpaceX Boca Chica, October 12, 2022, archived from the original on April 7, 2023, retrieved December 9, 2022.
  147. ^ Full Stack Cryo Testing | SpaceX Boca Chica, October 27, 2022, archived from the original on August 11, 2023, retrieved December 9, 2022.
  148. ^ Full Stack and Ship 25 Cryogenic Testing | SpaceX Boca Chica, November 2, 2022, archived from the original on April 7, 2023, retrieved December 9, 2022.
  149. ^ Ship 24 Destacked from Booster 7 for Static Fire | SpaceX Boca Chica, November 9, 2022, archived from the original on August 11, 2023, retrieved December 9, 2022.
  150. ^ Booster 7 Multi-Engine Spin Prime Test | SpaceX Boca Chica, November 12, 2022, archived from the original on April 7, 2023, retrieved December 9, 2022.
  151. ^ Booster 7 14 Engine Static Fire | SpaceX Boca Chica, November 14, 2022, archived from the original on April 7, 2023, retrieved December 9, 2022.
  152. ^ Booster 7 – 13 Second Static Fire Test | SpaceX Boca Chica, November 29, 2022, archived from the original on December 9, 2022, retrieved December 9, 2022.
  153. ^ Foust, Jeff (January 24, 2023). "SpaceX completes Starship wet dress rehearsal". SpaceNews. Archived from the original on April 15, 2023. Retrieved January 28, 2023.
  154. ^ Chang, Kenneth (February 9, 2023). "SpaceX Test Fires 31 Engines on the Most Powerful Rocket Ever". The New York Times. ISSN 0362-4331. Archived from the original on April 17, 2023. Retrieved February 9, 2023.
  155. ^ "SpaceX - Updates". SpaceX. Retrieved May 10, 2024.
  156. ^ @RGVaerialphotos (July 8, 2022). "Booster 8 is fully stacked!" (Tweet). Retrieved August 11, 2022 – via Twitter.
  157. ^ Booster 8 Rolled Out to the Launch Site for Testing | SpaceX Boca Chica, September 21, 2022, archived from the original on August 11, 2023, retrieved October 12, 2022.
  158. ^ Superheavy's Massive Fire Suppression System Dramatically Increases Performance, November 24, 2023, archived from the original on November 25, 2023, retrieved November 25, 2023.
  159. ^ How To Prevent Raptors From Destroying SuperHeavy, November 24, 2023, archived from the original on November 25, 2023, retrieved February 9, 2024.
  160. ^ a b c d e f g h i j Jax (November 18, 2023). "Preparing for Flight 2: The Chronological History of S25 & B9". Ringwatchers. Retrieved June 20, 2024.
  161. ^ SpaceX Rolls Starship Booster 9 at Starbase, July 20, 2023, archived from the original on July 20, 2023, retrieved July 20, 2023.
  162. ^ a b Full Replay: SpaceX Launches Second Starship Flight Test, November 18, 2023, archived from the original on November 22, 2023, retrieved November 30, 2023.
  163. ^ "SpaceX – Updates". May 24, 2024. Retrieved May 24, 2023.
  164. ^ SpaceX Launches Third Starship Flight Test, March 14, 2024, retrieved March 14, 2024.
  165. ^ a b Make Way! Starbase Demolitions Clear Room for Starfactory | SpaceX Boca Chica, June 7, 2023, archived from the original on June 7, 2023, retrieved June 8, 2023.
  166. ^ a b c d e f g h i memereview (June 6, 2024). "Speeding on to Flight 4: The Chronology of S29 & B11". Ringwatchers. Retrieved June 20, 2024.
  167. ^ SpaceX Static Fires Booster 11. Retrieved April 5, 2024 – via www.youtube.com.
  168. ^ SpaceX Rolls Out Booster 11 for Fourth Starship Flight Test Campaign. Retrieved May 11, 2024 – via www.youtube.com.
  169. ^ Starbase Weekly, Ep.115: NEW Static Fire Stand Testing - Ship 26 At Massey's!. Retrieved May 11, 2024 – via www.youtube.com.
  170. ^ NASASpaceflight (May 16, 2024). SpaceX Tests the Full Stack of the Fourth Starship Flight Test. Retrieved May 16, 2024 – via YouTube.
  171. ^ NASASpaceflight (May 20, 2024). SpaceX Performs Wet Dress Rehearsal of Fourth Starship Flight Stack. Retrieved May 20, 2024 – via YouTube.
  172. ^ NASASpaceflight (May 28, 2024). SpaceX Performs Second Wet Dress Rehearsal of Fourth Starship Flight Stack. Retrieved May 28, 2024 – via YouTube.
  173. ^ a b "Starship Flight 4". SpaceX. Retrieved June 6, 2024.
  174. ^ CSI Starbase (September 22, 2024). Q&A with CSI Starbase | Fire and Ice Review. Retrieved September 23, 2024 – via YouTube.
  175. ^ Musk, Elon [@elonmusk] (September 22, 2024). "Starship Super Heavy Booster Flight 4" (Tweet). Retrieved September 22, 2024 – via Twitter.
  176. ^ NASASpaceflight (October 10, 2024). Can SpaceX Catch a Starship Super Heavy? (Like Falcon 9?). Retrieved October 11, 2024 – via YouTube.
  177. ^ a b c memereview (October 13, 2024). "Flight 5, Super Heavy's Return Home: The Complete History of S30 & B12". Ringwatchers. Retrieved October 13, 2024.
  178. ^ Booster 12 Rolled Into Mega Bay 1 for Raptor Installation | SpaceX Boca Chica, January 24, 2024, archived from the original on January 24, 2024, retrieved January 24, 2024.
  179. ^ NASASpaceflight (July 10, 2024). Booster 12 Placed on the Orbital Launch Mount for Testing | SpaceX Boca Chica. Retrieved July 10, 2024 – via YouTube.
  180. ^ NASASpaceflight (July 12, 2024). SpaceX Tests Starship Super Heavy Booster 12 - Engine Testing. Retrieved July 12, 2024 – via YouTube.
  181. ^ NASASpaceflight (July 15, 2024). SpaceX Booster 12 Static Fire - SOUND ON. Retrieved July 16, 2024 – via YouTube.
  182. ^ NASASpaceflight (July 16, 2024). SpaceX Rolls Back Booster 12 after Static Fire Test. Retrieved July 16, 2024 – via YouTube.
  183. ^ Weber, Ryan (August 9, 2024). "Flight 5 and 6 Preparations Underway as SpaceX reveals Raptor 3". NASASpaceFlight.com. Retrieved August 9, 2024.
  184. ^ NASASpaceflight (September 21, 2024). SpaceX Stacks Ship 30 on Booster 12 | Starbase. Retrieved September 21, 2024 – via YouTube.
  185. ^ NASASpaceflight (September 23, 2024). SpaceX Tests the Stack for the Fifth Flight of Starship - Booster 12 and Ship 30. Retrieved September 23, 2024 – via YouTube.
  186. ^ NASASpaceflight (October 7, 2024). SpaceX Tests the Stack for the Fifth Flight of Starship - Booster 12 and Ship 30. Retrieved October 7, 2024 – via YouTube.
  187. ^ NASASpaceflight (October 11, 2024). FTS Installed Before Launch & Potential Catch | SpaceX Boca Chica. Retrieved October 11, 2024 – via YouTube.
  188. ^ NASASpaceflight (October 9, 2024). Countdown to Launch - FTS Installed, and TFR Posted!. Retrieved October 10, 2024 – via YouTube.
  189. ^ Bergin, Chris [@nasaspaceflight] (October 13, 2024). "Booster 12 has been returned to the Orbital Launch Mount (OLM), and the Booster Stand is staged down Highway 4" (Tweet). Retrieved October 13, 2024 – via Twitter.
  190. ^ Musk, Elon [@elonmusk] (October 13, 2024). "Just inspected the Starship booster, which the arms have now placed back in its launch mount. Looks great!" (Tweet). Retrieved October 13, 2024 – via Twitter.
  191. ^ NASASpaceflight (October 16, 2024). Booster 12 Gets Hero's Return for Post Catch Inspections! | SpaceX Boca Chica. Retrieved October 16, 2024 – via YouTube.
  192. ^ NASASpaceflight (October 15, 2024). SpaceX Rolls Booster 12 to the Production Site After Catch | Starbase. Retrieved October 15, 2024 – via YouTube.
  193. ^ NASASpaceflight (October 23, 2024). Booster 13 Rolled Out While Booster 12's Hotstage Ring is Recovered | SpaceX Boca Chica. Retrieved October 23, 2024 – via YouTube.
  194. ^ NASASpaceflight (October 31, 2024). New Starship Block 2 Cryo Proof Tested | SpaceX Boca Chica. Retrieved October 31, 2024 – via YouTube.
  195. ^ @VickiCocks15 (February 3, 2024). "Big news this morning!!" (Tweet). Archived from the original on February 3, 2024. Retrieved February 3, 2024 – via Twitter.
  196. ^ Doherty, Sean [@seankd_photos] (April 25, 2024). "Booster 13 off to Cyro Testing" (Tweet). Retrieved April 25, 2024 – via Twitter.
  197. ^ Coming Soon: Starship Propellant Transfer Demos | SpaceX Starbase Update. Retrieved April 29, 2024 – via www.youtube.com.
  198. ^ "SpaceX Starship Booster 13 LOX fill test looks successful". www.youtube.com. Retrieved April 30, 2024.
  199. ^ a b NASASpaceflight (October 24, 2024). SpaceX Tests Super Heavy 13 Booster for Starship Flight 6. Retrieved October 24, 2024 – via YouTube.
  200. ^ Bergin, Chris (October 25, 2024). "Ship 33 – the first Block 2 Ship – for Flight 7 is preparing to roll to Massey for testing, while Booster 13 (Flight 6) is heading back to the Production Site". X (formerly Twitter). Retrieved October 25, 2024.
  201. ^ @SpaceX (May 11, 2024). "Super Heavy booster for Flight 4 moving to the pad at Starbase" (Tweet). Retrieved May 11, 2024 – via Twitter.
  202. ^ NASASpaceflight (October 5, 2024). Humans for Scale - Starship Flight 5 Preps Continue | SpaceX Boca Chica. Retrieved October 5, 2024 – via YouTube.
  203. ^ Marcus House (October 5, 2024). Good or bad news for Starship Flight 5?, SpaceX Ground Themselves!?, and Vulcan Flight 2 Success!. Retrieved October 5, 2024 – via YouTube.
  204. ^ Bergin, Chris [@nasaspaceflight] (October 5, 2024). "As Ship 30 prepares to be restacked with Booster 12" (Tweet). Retrieved October 5, 2024 – via Twitter.
  205. ^ NASASpaceflight (October 8, 2024). SpaceX Prepared for Upcoming Starship Flight 5 | SpaceX Boca Chica. Retrieved October 8, 2024 – via YouTube.
  206. ^ @VickiCocks15 (October 15, 2024). "The first section of B16 was spotted being moved from one part of Starfactory to another" (Tweet). Retrieved October 15, 2024 – via Twitter.
  207. ^ NASASpaceflight (October 21, 2024). Flight 6 Preps Underway | Starbase Update. Retrieved October 22, 2024 – via YouTube.
  208. ^ "Laying the groundwork for Super Heavy amid Raptor Ramp Up". NasaSpaceflight.com. May 30, 2021. Archived from the original on May 30, 2021. Retrieved May 6, 2023. BN2 and BN2.1 sections were classed as test sections and were never set to become more than test tanks
  209. ^ Hot-Staging Ring Ready For Action! Starbase Flyover Update Episode 13!, August 22, 2023, archived from the original on August 22, 2023, retrieved August 22, 2023
  210. ^ a b NASASpaceflight (June 25, 2024). SpaceX Tests Chopstick System for Catch Using B14.1. Retrieved June 26, 2024 – via YouTube.
  211. ^ a b NASASpaceflight (August 18, 2024). Unusual Starship V2 Hardware Spotted | SpaceX Boca Chica. Retrieved August 18, 2024 – via YouTube.
  212. ^ @BocaChicaGal (June 3, 2021). "This afternoon the BN2.1 test tank is ready to roll to the pad at SpaceX Starbase" (Tweet) – via Twitter.
  213. ^ Super Heavy Test Tank Cryogenic Proof Test. NASASpaceflight. June 8, 2021. Archived from the original on June 28, 2021. Retrieved August 22, 2021 – via YouTube.
  214. ^ Super Heavy Test Tank Cryogenic Proof Test #2. NASASpaceflight. June 17, 2021. Archived from the original on June 27, 2021. Retrieved August 22, 2021 – via YouTube.
  215. ^ @NASASpaceflight (December 1, 2021). "Test Tank B2.1 has decided it's time to get frosty" (Tweet) – via Twitter.
  216. ^ Bergin, Chris [@NASASpaceflight] (December 3, 2021). "Test Tank B2.1 is undergoing more testing today, supplied by the Orbital Launch Site's Tank Farm on what is a very foggy morning" (Tweet). Retrieved December 3, 2021 – via Twitter.
  217. ^ a b c d Why SpaceX Could Be Forced To Abandon Starship Payloads Until 2024!, March 22, 2023, archived from the original on December 13, 2023, retrieved December 13, 2023.
  218. ^ Superheavy's Massive Fire Suppression System Dramatically Increases Performance, November 24, 2023, archived from the original on November 25, 2023, retrieved November 29, 2023.
  219. ^ Starlink Loader Moved Into Potential Clean Room | SpaceX Boca Chica, July 19, 2022, archived from the original on May 1, 2023, retrieved July 22, 2022.
  220. ^ B7.1 Test Tank Tested | SpaceX Starbase, June 28, 2022, archived from the original on May 3, 2023, retrieved July 22, 2022.
  221. ^ Ship 24 Raptor Engines Tested with Two Spin Primes | SpaceX Boca Chica, July 22, 2022, archived from the original on August 11, 2023, retrieved July 25, 2022.
  222. ^ a b Jax (December 31, 2022). "Remembering 2022: What Happened to Starship This Year?". Ringwatchers. Retrieved October 21, 2024.
  223. ^ Bergin, Chris [@NASASpaceflight] (September 16, 2022). "Booster 7 preparing for a potential Static Fire test and Test Tank B7.1 rolling away from the launch site down Highway 4" (Tweet). Retrieved December 1, 2023 – via Twitter.
  224. ^ SpaceX Starbase Equipment Destroyed and Massive Site Changes Coming!, December 16, 2023, archived from the original on December 16, 2023, retrieved December 16, 2023.
  225. ^ @Ringwatchers (July 31, 2023). "The test article at the Massey's testing site is labelled the "Hot Stage Load Head", and will be used to qualify the interstage against the aerodynamic forces it will experience during flight. There are 3 main components to this" (Tweet). Archived from the original on December 13, 2023. Retrieved December 13, 2023 – via Twitter.
  226. ^ @StarshipGazer (July 30, 2023). "New Hot Staging test section rolled out today. Label on it says "Hot Stage Load Head"" (Tweet). Archived from the original on December 13, 2023. Retrieved December 13, 2023 – via Twitter.
  227. ^ @cnunezimages (August 9, 2023). "Image Taken: August 7, 2023" (Tweet). Archived from the original on December 13, 2023. Retrieved December 13, 2023 – via Twitter.
  228. ^ S26: LAUNCH OR SCRAP?! – Starbase Flyover Update Episode 22, November 2, 2023, archived from the original on December 19, 2023, retrieved December 19, 2023.
  229. ^ SpaceX Revving Up for Starship Flight 3: | Starbase Update, January 29, 2024, archived from the original on January 29, 2024, retrieved January 29, 2024.
  230. ^ RGV Aerial Photography (May 29, 2024). Starbase Tower 2 Foundations | Flyover Update Episode 43. Retrieved May 30, 2024 – via YouTube.
  231. ^ NASASpaceflight (June 22, 2024). New Ablative Material Spotted on Ship 30 | SpaceX Boca Chica. Retrieved June 22, 2024 – via YouTube.
  232. ^ NASASpaceflight (July 12, 2021). Starbase Live: 24/7 Starship & Super Heavy Development From SpaceX's Boca Chica Facility. Retrieved June 22, 2024 – via YouTube.
  233. ^ Romera, Alejandro [@alexphysics13] (June 27, 2024). "Shortly after this SpaceX performed another slap but this time higher than the slaps from yesterday. They've done that now two times, this is video of that second time. The chopsticks have gone down since and they may be slapping lower like yesterday" (Tweet). Retrieved June 27, 2024 – via Twitter.
  234. ^ Anderson, Niall [@iniallanderson] (August 15, 2024). "SpaceX have been spending the last couple hours squeezing B14.1" (Tweet). Retrieved August 16, 2024 – via Twitter.
  235. ^ a b Aravelo, Evelyn (January 10, 2020). "SpaceX conducted a pressure test on a Starship dome tank at Boca Chica today". Tesmaian. Archived from the original on January 11, 2020. Retrieved February 1, 2021.
  236. ^ a b SpaceX Boca Chica – Starship Test Tank 2 Destructive Cryo Test (YouTube). NASASpaceflight. January 29, 2020. Archived from the original on February 18, 2021. Retrieved August 22, 2021.
  237. ^ Ralph, Eric (January 12, 2020). "SpaceX just blew up a Starship tank on purpose and Elon Musk says the results are in". Archived from the original on April 15, 2023. Retrieved May 6, 2023.
  238. ^ Musk, Elon [@elonmusk] (January 27, 2020). "Starship 9m test tank made 7.5 bar at room temp! Small leak at a weld double. Will be repaired & retested at cryo. https://t.co/Bz3lrwkYRU" (Tweet). Archived from the original on June 3, 2021. Retrieved August 22, 2021 – via Twitter.
  239. ^ Chris Bergin – NSF [@NASASpaceflight] (January 28, 2020). "Farewell Test Tank 2, and we thank you. https://t.co/Je69rLmr28 https://t.co/AUpIb7kv24" (Tweet). Archived from the original on January 23, 2021. Retrieved August 22, 2021 – via Twitter.
  240. ^ Musk, Elon [@elonmusk] (January 29, 2020). "8.5 bar" (Tweet) – via Twitter.
  241. ^ GSE Test Tank Undergoes Cryogenic Proof Testing | SpaceX Boca Chica, August 26, 2021, archived from the original on April 27, 2023, retrieved January 19, 2022.
  242. ^ GSE-4 Tank Fails During Testing | SpaceX Boca Chica, January 18, 2022, archived from the original on August 11, 2023, retrieved January 20, 2022
  243. ^ The SpaceX Military Starship Is Real! How's This Going To End?, December 12, 2023, archived from the original on December 12, 2023, retrieved December 12, 2023.