Jump to content

Reeb stability theorem

From Wikipedia, the free encyclopedia
(Redirected from Reeb Stability Theorem)

In mathematics, Reeb stability theorem, named after Georges Reeb, asserts that if one leaf of a codimension-one foliation is closed and has finite fundamental group, then all the leaves are closed and have finite fundamental group.

Reeb local stability theorem

[edit]

Theorem:[1] Let be a , codimension foliation of a manifold and a compact leaf with finite holonomy group. There exists a neighborhood of , saturated in (also called invariant), in which all the leaves are compact with finite holonomy groups. Further, we can define a retraction such that, for every leaf , is a covering map with a finite number of sheets and, for each , is homeomorphic to a disk of dimension k and is transverse to . The neighborhood can be taken to be arbitrarily small.

The last statement means in particular that, in a neighborhood of the point corresponding to a compact leaf with finite holonomy, the space of leaves is Hausdorff. Under certain conditions the Reeb local stability theorem may replace the Poincaré–Bendixson theorem in higher dimensions.[2] This is the case of codimension one, singular foliations , with , and some center-type singularity in .

The Reeb local stability theorem also has a version for a noncompact codimension-1 leaf.[3][4]

Reeb global stability theorem

[edit]

An important problem in foliation theory is the study of the influence exerted by a compact leaf upon the global structure of a foliation. For certain classes of foliations, this influence is considerable.

Theorem:[1] Let be a , codimension one foliation of a closed manifold . If contains a compact leaf with finite fundamental group, then all the leaves of are compact, with finite fundamental group. If is transversely orientable, then every leaf of is diffeomorphic to ; is the total space of a fibration over , with fibre , and is the fibre foliation, .

This theorem holds true even when is a foliation of a manifold with boundary, which is, a priori, tangent on certain components of the boundary and transverse on other components.[5] In this case it implies Reeb sphere theorem.

Reeb Global Stability Theorem is false for foliations of codimension greater than one.[6] However, for some special kinds of foliations one has the following global stability results:

  • In the presence of a certain transverse geometric structure:

Theorem:[7] Let be a complete conformal foliation of codimension of a connected manifold . If has a compact leaf with finite holonomy group, then all the leaves of are compact with finite holonomy group.

Theorem:[8] Let be a holomorphic foliation of codimension in a compact complex Kähler manifold. If has a compact leaf with finite holonomy group then every leaf of is compact with finite holonomy group.

References

[edit]
  • C. Camacho, A. Lins Neto: Geometric theory of foliations, Boston, Birkhauser, 1985
  • I. Tamura, Topology of foliations: an introduction, Transl. of Math. Monographs, AMS, v.97, 2006, 193 p.

Notes

[edit]
  1. ^ a b G. Reeb (1952). Sur certaines propriétés toplogiques des variétés feuillétées. Actualités Sci. Indust. Vol. 1183. Paris: Hermann.
  2. ^ J. Palis, jr., W. de Melo, Geometric theory of dynamical systems: an introduction, — New-York, Springer,1982.
  3. ^ T.Inaba, Reeb stability of noncompact leaves of foliations,— Proc. Japan Acad. Ser. A Math. Sci., 59:158{160, 1983 [1]
  4. ^ J. Cantwell and L. Conlon, Reeb stability for noncompact leaves in foliated 3-manifolds, — Proc. Amer.Math.Soc. 33 (1981), no. 2, 408–410.[2]
  5. ^ C. Godbillon, Feuilletages, etudies geometriques, — Basel, Birkhauser, 1991
  6. ^ W.T.Wu and G.Reeb, Sur les éspaces fibres et les variétés feuillitées, — Hermann, 1952.
  7. ^ R.A. Blumenthal, Stability theorems for conformal foliations, — Proc. AMS. 91, 1984, p. 55–63. [3]
  8. ^ J.V. Pereira, Global stability for holomorphic foliations on Kaehler manifolds, — Qual. Theory Dyn. Syst. 2 (2001), 381–384. arXiv:math/0002086v2