Jump to content

Dense submodule

From Wikipedia, the free encyclopedia
(Redirected from Rational hull)

In abstract algebra, specifically in module theory, a dense submodule of a module is a refinement of the notion of an essential submodule. If N is a dense submodule of M, it may alternatively be said that "N ⊆ M is a rational extension". Dense submodules are connected with rings of quotients in noncommutative ring theory. Most of the results appearing here were first established in (Johnson 1951), (Utumi 1956) and (Findlay & Lambek 1958).

It should be noticed that this terminology is different from the notion of a dense subset in general topology. No topology is needed to define a dense submodule, and a dense submodule may or may not be topologically dense in a module with topology.

Definition

[edit]

This article modifies exposition appearing in (Storrer 1972) and (Lam 1999, p. 272). Let R be a ring, and M be a right R-module with submodule N. For an element y of M, define

Note that the expression y−1 is only formal since it is not meaningful to speak of the module element y being invertible, but the notation helps to suggest that y⋅(y−1N) ⊆ N. The set y −1N is always a right ideal of R.

A submodule N of M is said to be a dense submodule if for all x and y in M with x ≠ 0, there exists an r in R such that xr ≠ {0} and yr is in N. In other words, using the introduced notation, the set

In this case, the relationship is denoted by

Another equivalent definition is homological in nature: N is dense in M if and only if

where E(M) is the injective hull of M.

Properties

[edit]
  • It can be shown that N is an essential submodule of M if and only if for all y ≠ 0 in M, the set y⋅(y −1N) ≠ {0}. Clearly then, every dense submodule is an essential submodule.
  • If M is a nonsingular module, then N is dense in M if and only if it is essential in M.
  • A ring is a right nonsingular ring if and only if its essential right ideals are all dense right ideals.
  • If N and N' are dense submodules of M, then so is N ∩ N' .
  • If N is dense and N ⊆ K ⊆ M, then K is also dense.
  • If B is a dense right ideal in R, then so is y−1B for any y in R.

Examples

[edit]
  • If x is a non-zerodivisor in the center of R, then xR is a dense right ideal of R.
  • If I is a two-sided ideal of R, I is dense as a right ideal if and only if the left annihilator of I is zero, that is, . In particular in commutative rings, the dense ideals are precisely the ideals which are faithful modules.

Applications

[edit]

Rational hull of a module

[edit]

Every right R-module M has a maximal essential extension E(M) which is its injective hull. The analogous construction using a maximal dense extension results in the rational hull (M) which is a submodule of E(M). When a module has no proper rational extension, so that (M) = M, the module is said to be rationally complete. If R is right nonsingular, then of course (M) = E(M).

The rational hull is readily identified within the injective hull. Let S=EndR(E(M)) be the endomorphism ring of the injective hull. Then an element x of the injective hull is in the rational hull if and only if x is sent to zero by all maps in S which are zero on M. In symbols,

In general, there may be maps in S which are zero on M and yet are nonzero for some x not in M, and such an x would not be in the rational hull.

Maximal right ring of quotients

[edit]

The maximal right ring of quotients can be described in two ways in connection with dense right ideals of R.

  • In one method, (R) is shown to be module-isomorphic to a certain endomorphism ring, and the ring structure is taken across this isomorphism to imbue (R) with a ring structure, that of the maximal right ring of quotients. (Lam 1999, p. 366)
  • In a second method, the maximal right ring of quotients is identified with a set of equivalence classes of homomorphisms from dense right ideals of R into R. The equivalence relation says that two functions are equivalent if they agree on a dense right ideal of R. (Lam 1999, p. 370)

References

[edit]
  • Findlay, G. D.; Lambek, J. (1958), "A generalized ring of quotients. I, II", Canadian Mathematical Bulletin, 1 (2): 77–85, 155–167, doi:10.4153/CMB-1958-009-3, ISSN 0008-4395, MR 0094370
  • Johnson, R. E. (1951), "The extended centralizer of a ring over a module", Proceedings of the American Mathematical Society, 2 (6): 891–895, doi:10.1090/s0002-9939-1951-0045695-9, ISSN 0002-9939, MR 0045695
  • Lam, Tsit-Yuen (1999), Lectures on modules and rings, Graduate Texts in Mathematics No. 189, vol. 189, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0525-8, ISBN 978-0-387-98428-5, MR 1653294
  • Storrer, Hans H. (1972), "On Goldman's primary decomposition", Lectures on Rings and Modules (Tulane Univ. Ring and Operator Theory), Lecture Notes in Mathematics, I (1970–1971), Berlin: Springer: 617–661, doi:10.1007/bfb0059571, ISBN 978-3-540-05760-4, MR 0360717
  • Utumi, Yuzo (1956), "On quotient rings", Osaka Mathematical Journal, 8: 1–18, doi:10.18910/8001, MR 0078966