Q-analog of hypergeometric series
In mathematics , basic hypergeometric series , or q -hypergeometric series , are q -analogue generalizations of generalized hypergeometric series , and are in turn generalized by elliptic hypergeometric series .
A series x n is called hypergeometric if the ratio of successive terms x n +1 /x n is a rational function of n . If the ratio of successive terms is a rational function of q n , then the series is called a basic hypergeometric series. The number q is called the base.
The basic hypergeometric series
2
ϕ
1
(
q
α
,
q
β
;
q
γ
;
q
,
x
)
{\displaystyle {}_{2}\phi _{1}(q^{\alpha },q^{\beta };q^{\gamma };q,x)}
was first considered by Eduard Heine (1846 ). It becomes the hypergeometric series
F
(
α
,
β
;
γ
;
x
)
{\displaystyle F(\alpha ,\beta ;\gamma ;x)}
in the limit when base
q
=
1
{\displaystyle q=1}
.
There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ.
The unilateral basic hypergeometric series is defined as
j
ϕ
k
[
a
1
a
2
…
a
j
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
0
∞
(
a
1
,
a
2
,
…
,
a
j
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
,
q
;
q
)
n
(
(
−
1
)
n
q
(
n
2
)
)
1
+
k
−
j
z
n
{\displaystyle \;_{j}\phi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{j}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=0}^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{j};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k},q;q)_{n}}}\left((-1)^{n}q^{n \choose 2}\right)^{1+k-j}z^{n}}
where
(
a
1
,
a
2
,
…
,
a
m
;
q
)
n
=
(
a
1
;
q
)
n
(
a
2
;
q
)
n
…
(
a
m
;
q
)
n
{\displaystyle (a_{1},a_{2},\ldots ,a_{m};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n}\ldots (a_{m};q)_{n}}
and
(
a
;
q
)
n
=
∏
k
=
0
n
−
1
(
1
−
a
q
k
)
=
(
1
−
a
)
(
1
−
a
q
)
(
1
−
a
q
2
)
⋯
(
1
−
a
q
n
−
1
)
{\displaystyle (a;q)_{n}=\prod _{k=0}^{n-1}(1-aq^{k})=(1-a)(1-aq)(1-aq^{2})\cdots (1-aq^{n-1})}
is the q -shifted factorial .
The most important special case is when j = k + 1, when it becomes
k
+
1
ϕ
k
[
a
1
a
2
…
a
k
a
k
+
1
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
0
∞
(
a
1
,
a
2
,
…
,
a
k
+
1
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
,
q
;
q
)
n
z
n
.
{\displaystyle \;_{k+1}\phi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{k}&a_{k+1}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=0}^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{k+1};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k},q;q)_{n}}}z^{n}.}
This series is called balanced if a 1 ... a k + 1 = b 1 ...b k q .
This series is called well poised if a 1 q = a 2 b 1 = ... = a k + 1b k , and very well poised if in addition a 2 = −a 3 = qa 1 1/2 .
The unilateral basic hypergeometric series is a q-analog of the hypergeometric series since
lim
q
→
1
j
ϕ
k
[
q
a
1
q
a
2
…
q
a
j
q
b
1
q
b
2
…
q
b
k
;
q
,
(
q
−
1
)
1
+
k
−
j
z
]
=
j
F
k
[
a
1
a
2
…
a
j
b
1
b
2
…
b
k
;
z
]
{\displaystyle \lim _{q\to 1}\;_{j}\phi _{k}\left[{\begin{matrix}q^{a_{1}}&q^{a_{2}}&\ldots &q^{a_{j}}\\q^{b_{1}}&q^{b_{2}}&\ldots &q^{b_{k}}\end{matrix}};q,(q-1)^{1+k-j}z\right]=\;_{j}F_{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{j}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};z\right]}
holds (Koekoek & Swarttouw (1996) ).
The bilateral basic hypergeometric series , corresponding to the bilateral hypergeometric series , is defined as
j
ψ
k
[
a
1
a
2
…
a
j
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
−
∞
∞
(
a
1
,
a
2
,
…
,
a
j
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
;
q
)
n
(
(
−
1
)
n
q
(
n
2
)
)
k
−
j
z
n
.
{\displaystyle \;_{j}\psi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{j}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=-\infty }^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{j};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k};q)_{n}}}\left((-1)^{n}q^{n \choose 2}\right)^{k-j}z^{n}.}
The most important special case is when j = k , when it becomes
k
ψ
k
[
a
1
a
2
…
a
k
b
1
b
2
…
b
k
;
q
,
z
]
=
∑
n
=
−
∞
∞
(
a
1
,
a
2
,
…
,
a
k
;
q
)
n
(
b
1
,
b
2
,
…
,
b
k
;
q
)
n
z
n
.
{\displaystyle \;_{k}\psi _{k}\left[{\begin{matrix}a_{1}&a_{2}&\ldots &a_{k}\\b_{1}&b_{2}&\ldots &b_{k}\end{matrix}};q,z\right]=\sum _{n=-\infty }^{\infty }{\frac {(a_{1},a_{2},\ldots ,a_{k};q)_{n}}{(b_{1},b_{2},\ldots ,b_{k};q)_{n}}}z^{n}.}
The unilateral series can be obtained as a special case of the bilateral one by setting one of the b variables equal to q , at least when none of the a variables is a power of q , as all the terms with n < 0 then vanish.
Some simple series expressions include
z
1
−
q
2
ϕ
1
[
q
q
q
2
;
q
,
z
]
=
z
1
−
q
+
z
2
1
−
q
2
+
z
3
1
−
q
3
+
…
{\displaystyle {\frac {z}{1-q}}\;_{2}\phi _{1}\left[{\begin{matrix}q\;q\\q^{2}\end{matrix}}\;;q,z\right]={\frac {z}{1-q}}+{\frac {z^{2}}{1-q^{2}}}+{\frac {z^{3}}{1-q^{3}}}+\ldots }
and
z
1
−
q
1
/
2
2
ϕ
1
[
q
q
1
/
2
q
3
/
2
;
q
,
z
]
=
z
1
−
q
1
/
2
+
z
2
1
−
q
3
/
2
+
z
3
1
−
q
5
/
2
+
…
{\displaystyle {\frac {z}{1-q^{1/2}}}\;_{2}\phi _{1}\left[{\begin{matrix}q\;q^{1/2}\\q^{3/2}\end{matrix}}\;;q,z\right]={\frac {z}{1-q^{1/2}}}+{\frac {z^{2}}{1-q^{3/2}}}+{\frac {z^{3}}{1-q^{5/2}}}+\ldots }
and
2
ϕ
1
[
q
−
1
−
q
;
q
,
z
]
=
1
+
2
z
1
+
q
+
2
z
2
1
+
q
2
+
2
z
3
1
+
q
3
+
…
.
{\displaystyle \;_{2}\phi _{1}\left[{\begin{matrix}q\;-1\\-q\end{matrix}}\;;q,z\right]=1+{\frac {2z}{1+q}}+{\frac {2z^{2}}{1+q^{2}}}+{\frac {2z^{3}}{1+q^{3}}}+\ldots .}
The q -binomial theorem [ edit ]
The q -binomial theorem (first published in 1811 by Heinrich August Rothe )[ 1] [ 2] states that
1
ϕ
0
(
a
;
q
,
z
)
=
(
a
z
;
q
)
∞
(
z
;
q
)
∞
=
∏
n
=
0
∞
1
−
a
q
n
z
1
−
q
n
z
{\displaystyle \;_{1}\phi _{0}(a;q,z)={\frac {(az;q)_{\infty }}{(z;q)_{\infty }}}=\prod _{n=0}^{\infty }{\frac {1-aq^{n}z}{1-q^{n}z}}}
which follows by repeatedly applying the identity
1
ϕ
0
(
a
;
q
,
z
)
=
1
−
a
z
1
−
z
1
ϕ
0
(
a
;
q
,
q
z
)
.
{\displaystyle \;_{1}\phi _{0}(a;q,z)={\frac {1-az}{1-z}}\;_{1}\phi _{0}(a;q,qz).}
The special case of a = 0 is closely related to the q-exponential .
Cauchy binomial theorem [ edit ]
Cauchy binomial theorem is a special case of the q-binomial theorem.[ 3]
∑
n
=
0
N
y
n
q
n
(
n
+
1
)
/
2
[
N
n
]
q
=
∏
k
=
1
N
(
1
+
y
q
k
)
(
|
q
|
<
1
)
{\displaystyle \sum _{n=0}^{N}y^{n}q^{n(n+1)/2}{\begin{bmatrix}N\\n\end{bmatrix}}_{q}=\prod _{k=1}^{N}\left(1+yq^{k}\right)\qquad (|q|<1)}
Ramanujan's identity[ edit ]
Srinivasa Ramanujan gave the identity
1
ψ
1
[
a
b
;
q
,
z
]
=
∑
n
=
−
∞
∞
(
a
;
q
)
n
(
b
;
q
)
n
z
n
=
(
b
/
a
,
q
,
q
/
a
z
,
a
z
;
q
)
∞
(
b
,
b
/
a
z
,
q
/
a
,
z
;
q
)
∞
{\displaystyle \;_{1}\psi _{1}\left[{\begin{matrix}a\\b\end{matrix}};q,z\right]=\sum _{n=-\infty }^{\infty }{\frac {(a;q)_{n}}{(b;q)_{n}}}z^{n}={\frac {(b/a,q,q/az,az;q)_{\infty }}{(b,b/az,q/a,z;q)_{\infty }}}}
valid for |q | < 1 and |b /a | < |z | < 1. Similar identities for
6
ψ
6
{\displaystyle \;_{6}\psi _{6}}
have been given by Bailey. Such identities can be understood to be generalizations of the Jacobi triple product theorem, which can be written using q-series as
∑
n
=
−
∞
∞
q
n
(
n
+
1
)
/
2
z
n
=
(
q
;
q
)
∞
(
−
1
/
z
;
q
)
∞
(
−
z
q
;
q
)
∞
.
{\displaystyle \sum _{n=-\infty }^{\infty }q^{n(n+1)/2}z^{n}=(q;q)_{\infty }\;(-1/z;q)_{\infty }\;(-zq;q)_{\infty }.}
Ken Ono gives a related formal power series [ 4]
A
(
z
;
q
)
=
d
e
f
1
1
+
z
∑
n
=
0
∞
(
z
;
q
)
n
(
−
z
q
;
q
)
n
z
n
=
∑
n
=
0
∞
(
−
1
)
n
z
2
n
q
n
2
.
{\displaystyle A(z;q){\stackrel {\rm {def}}{=}}{\frac {1}{1+z}}\sum _{n=0}^{\infty }{\frac {(z;q)_{n}}{(-zq;q)_{n}}}z^{n}=\sum _{n=0}^{\infty }(-1)^{n}z^{2n}q^{n^{2}}.}
Watson's contour integral[ edit ]
As an analogue of the Barnes integral for the hypergeometric series, Watson showed that
2
ϕ
1
(
a
,
b
;
c
;
q
,
z
)
=
−
1
2
π
i
(
a
,
b
;
q
)
∞
(
q
,
c
;
q
)
∞
∫
−
i
∞
i
∞
(
q
q
s
,
c
q
s
;
q
)
∞
(
a
q
s
,
b
q
s
;
q
)
∞
π
(
−
z
)
s
sin
π
s
d
s
{\displaystyle {}_{2}\phi _{1}(a,b;c;q,z)={\frac {-1}{2\pi i}}{\frac {(a,b;q)_{\infty }}{(q,c;q)_{\infty }}}\int _{-i\infty }^{i\infty }{\frac {(qq^{s},cq^{s};q)_{\infty }}{(aq^{s},bq^{s};q)_{\infty }}}{\frac {\pi (-z)^{s}}{\sin \pi s}}ds}
where the poles of
(
a
q
s
,
b
q
s
;
q
)
∞
{\displaystyle (aq^{s},bq^{s};q)_{\infty }}
lie to the left of the contour and the remaining poles lie to the right. There is a similar contour integral for r +1 φr . This contour integral gives an analytic continuation of the basic hypergeometric function in z .
The basic hypergeometric matrix function can be defined as follows:
2
ϕ
1
(
A
,
B
;
C
;
q
,
z
)
:=
∑
n
=
0
∞
(
A
;
q
)
n
(
B
;
q
)
n
(
C
;
q
)
n
(
q
;
q
)
n
z
n
,
(
A
;
q
)
0
:=
1
,
(
A
;
q
)
n
:=
∏
k
=
0
n
−
1
(
1
−
A
q
k
)
.
{\displaystyle {}_{2}\phi _{1}(A,B;C;q,z):=\sum _{n=0}^{\infty }{\frac {(A;q)_{n}(B;q)_{n}}{(C;q)_{n}(q;q)_{n}}}z^{n},\quad (A;q)_{0}:=1,\quad (A;q)_{n}:=\prod _{k=0}^{n-1}(1-Aq^{k}).}
The ratio test shows that this matrix function is absolutely convergent.[ 5]
^ Bressoud, D. M. (1981), "Some identities for terminating q -series", Mathematical Proceedings of the Cambridge Philosophical Society , 89 (2): 211– 223, Bibcode :1981MPCPS..89..211B , doi :10.1017/S0305004100058114 , MR 0600238 .
^ Benaoum, H. B. (1998), "h -analogue of Newton's binomial formula", Journal of Physics A: Mathematical and General , 31 (46): L751 – L754 , arXiv :math-ph/9812011 , Bibcode :1998JPhA...31L.751B , doi :10.1088/0305-4470/31/46/001 , S2CID 119697596 .
^ Wolfram Mathworld: Cauchy Binomial Theorem
^ Gwynneth H. Coogan and Ken Ono , A q-series identity and the Arithmetic of Hurwitz Zeta Functions , (2003) Proceedings of the American Mathematical Society 131 , pp. 719–724
^ Ahmed Salem (2014) The basic Gauss hypergeometric matrix function
and its matrix q-difference equation, Linear and Multilinear Algebra, 62:3, 347-361, DOI:
10.1080/03081087.2013.777437
Andrews, G. E. (2010), "q-Hypergeometric and Related Functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
W.N. Bailey, Generalized Hypergeometric Series , (1935) Cambridge Tracts in Mathematics and Mathematical Physics, No.32, Cambridge University Press, Cambridge.
William Y. C. Chen and Amy Fu, Semi-Finite Forms of Bilateral Basic Hypergeometric Series (2004)
Exton , H. (1983), q-Hypergeometric Functions and Applications , New York: Halstead Press, Chichester: Ellis Horwood, ISBN 0853124914 , ISBN 0470274530 , ISBN 978-0470274538
Sylvie Corteel and Jeremy Lovejoy, Frobenius Partitions and the Combinatorics of Ramanujan's
1
ψ
1
{\displaystyle \,_{1}\psi _{1}}
Summation
Fine, Nathan J. (1988), Basic hypergeometric series and applications , Mathematical Surveys and Monographs, vol. 27, Providence, R.I.: American Mathematical Society , ISBN 978-0-8218-1524-3 , MR 0956465
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series , Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press , ISBN 978-0-521-83357-8 , MR 2128719
Heine, Eduard (1846), "Über die Reihe
1
+
(
q
α
−
1
)
(
q
β
−
1
)
(
q
−
1
)
(
q
γ
−
1
)
x
+
(
q
α
−
1
)
(
q
α
+
1
−
1
)
(
q
β
−
1
)
(
q
β
+
1
−
1
)
(
q
−
1
)
(
q
2
−
1
)
(
q
γ
−
1
)
(
q
γ
+
1
−
1
)
x
2
+
⋯
{\displaystyle 1+{\frac {(q^{\alpha }-1)(q^{\beta }-1)}{(q-1)(q^{\gamma }-1)}}x+{\frac {(q^{\alpha }-1)(q^{\alpha +1}-1)(q^{\beta }-1)(q^{\beta +1}-1)}{(q-1)(q^{2}-1)(q^{\gamma }-1)(q^{\gamma +1}-1)}}x^{2}+\cdots }
" , Journal für die reine und angewandte Mathematik , 32 : 210– 212
Victor Kac , Pokman Cheung, Quantum calculus, Universitext, Springer-Verlag, 2002. ISBN 0-387-95341-8
Koekoek, Roelof; Swarttouw, Rene F. (1996). The Askey scheme of orthogonal polynomials and its q-analogues (Report). Technical University Delft. no. 98-17. . Section 0.2
Andrews, G. E., Askey, R. and Roy, R. (1999). Special Functions, Encyclopedia of Mathematics and its Applications, volume 71, Cambridge University Press .
Eduard Heine , Theorie der Kugelfunctionen , (1878) 1 , pp 97–125.
Eduard Heine, Handbuch die Kugelfunctionen. Theorie und Anwendung (1898) Springer, Berlin.