Jump to content

Post–Hartree–Fock

From Wikipedia, the free encyclopedia
(Redirected from Post-Hartree–Fock)

In computational chemistry, post–Hartree–Fock[1][2] (post-HF) methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

Details

[edit]

In general, the SCF procedure makes several assumptions about the nature of the multi-body Schrödinger equation and its set of solutions:

For the great majority of systems under study, in particular for excited states and processes such as molecular dissociation reactions, the fourth item is by far the most important. As a result, the term post–Hartree–Fock method is typically used for methods of approximating the electron correlation of a system.

Usually, post–Hartree–Fock methods[3][4] give more accurate results than Hartree–Fock calculations, although the added accuracy comes with the price of added computational cost.

Post–Hartree–Fock methods

[edit]
[edit]

Methods that use more than one determinant are not strictly post–Hartree–Fock methods, as they use a single determinant as reference, but they often use similar perturbation, or configuration interaction methods to improve the description of electron correlation. These methods include:

References

[edit]
  1. ^ Cramer, Christopher J. (2002). Essentials of Computational Chemistry. John Wiley & Sons. ISBN 0-470-09182-7.
  2. ^ Jensen, Frank (1999). Introduction to Computational Chemistry 2nd edition. John Wiley & Sons. ISBN 0-470-01187-4.
  3. ^ "Post-Hartree–Fock Methods", Methods of Molecular Quantum Mechanics, John Wiley & Sons, Ltd, 2009, pp. 133–139, doi:10.1002/9780470684559.ch8, ISBN 9780470684559
  4. ^ DaCosta, Herbert (2011). Rate Constant Calculation for Thermal Reactions : Methods and Applications. John Wiley & Sons. ISBN 9781118166123. OCLC 769342424.
  5. ^ David Maurice & Martin Head-Gordon (May 10, 1999). "Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: theory and application to benzo[a]pyrene and chalcone". Molecular Physics. 96 (10). Taylor & Francis: 1533–1541. Bibcode:1999MolPh..96.1533M. doi:10.1080/00268979909483096.
  6. ^ Martin Head-Gordon; Rudolph J. Rico; Manabu Oumi & Timothy J. Lee (1994). "A doubles correction to electronic excited states from configuration interaction in the space of single substitutions". Chemical Physics Letters. 219 (1–2). Elsevier: 21–29. Bibcode:1994CPL...219...21H. doi:10.1016/0009-2614(94)00070-0.
  7. ^ George D. Purvis & Rodney J. Bartlett (1982). "A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples". The Journal of Chemical Physics. 76 (4). The American Institute of Physics: 1910–1919. Bibcode:1982JChPh..76.1910P. doi:10.1063/1.443164.
  8. ^ Krishnan Raghavachari; Gary W. Trucks; John A. Pople & Martin Head-Gordon (March 24, 1989). "A fifth-order perturbation comparison of electron correlation theories". Chemical Physics Letters. 157 (6). Elsevier Science: 479–483. Bibcode:1989CPL...157..479R. doi:10.1016/S0009-2614(89)87395-6.
  9. ^ Troy Van Voorhis & Martin Head-Gordon (June 19, 2001). "Two-body coupled cluster expansions". The Journal of Chemical Physics. 115 (11). The American Institute of Physics: 5033–5041. Bibcode:2001JChPh.115.5033V. doi:10.1063/1.1390516.
  10. ^ H. D. Meyer; U. Manthe & L. S. Cederbaum (1990). "The multi-configurational time-dependent Hartree approach". Chem. Phys. Lett. 165 (73): 73–78. Bibcode:1990CPL...165...73M. doi:10.1016/0009-2614(90)87014-I.
  11. ^ Chr. Møller & M. S. Plesset (October 1934). "Note on an Approximation Treatment form Many-Electron Systems". Physical Review. 46 (7). The American Physical Society: 618–622. Bibcode:1934PhRv...46..618M. doi:10.1103/PhysRev.46.618.
  12. ^ Krishnan Raghavachari & John A. Pople (February 22, 1978). "Approximate fourth-order perturbation theory of the electron correlation energy". International Journal of Quantum Chemistry. 14 (1). Wiley InterScience: 91–100. doi:10.1002/qua.560140109.
  13. ^ John A. Pople; Martin Head‐Gordon & Krishnan Raghavachari (1987). "Quadratic configuration interaction. A general technique for determining electron correlation energies". The Journal of Chemical Physics. 87 (10). American Institute of Physics: 5968–35975. Bibcode:1987JChPh..87.5968P. doi:10.1063/1.453520.
  14. ^ Larry A. Curtiss; Krishnan Raghavachari; Gary W. Trucks & John A. Pople (February 15, 1991). "Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds". The Journal of Chemical Physics. 94 (11). The American Institute of Physics: 7221–7231. Bibcode:1991JChPh..94.7221C. doi:10.1063/1.460205.
  15. ^ Larry A. Curtiss; Krishnan Raghavachari; Paul C. Redfern; Vitaly Rassolov & John A. Pople (July 22, 1998). "Gaussian-3 (G3) theory for molecules containing first and second-row atoms". The Journal of Chemical Physics. 109 (18). The American Institute of Physics: 7764–7776. Bibcode:1998JChPh.109.7764C. doi:10.1063/1.477422.
  16. ^ William S. Ohlinger; Philip E. Klunzinger; Bernard J. Deppmeier & Warren J. Hehre (January 2009). "Efficient Calculation of Heats of Formation". The Journal of Physical Chemistry A. 113 (10). ACS Publications: 2165–2175. Bibcode:2009JPCA..113.2165O. doi:10.1021/jp810144q. PMID 19222177.

Further reading

[edit]
  • Jensen, F. (1999). Introduction to Computational Chemistry. New York: John Wiley & Sons. ISBN 0471980854.