Jump to content

Mitoquinone mesylate

From Wikipedia, the free encyclopedia
(Redirected from Mitoquinone)
Mitoquinone mesylate
Clinical data
Trade namesMitoQ
Identifiers
  • 10-(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)decyl-triphenylphosphanium methanesulfonate
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC38H47O7PS
Molar mass678.82 g·mol−1
3D model (JSmol)
  • CC1=C(C(=O)C(=C(C1=O)OC)OC)CCCCCCCCCC[P+](C2=CC=CC=C2)(C3=CC=CC=C3)C4=CC=CC=C4.CS(=O)(=O)[O-]
  • InChI=1S/C37H44O4P.CH4O3S/c1-29-33(35(39)37(41-3)36(40-2)34(29)38)27-19-8-6-4-5-7-9-20-28-42(30-21-13-10-14-22-30,31-23-15-11-16-24-31)32-25-17-12-18-26-32;1-5(2,3)4/h10-18,21-26H,4-9,19-20,27-28H2,1-3H3;1H3,(H,2,3,4)/q+1;/p-1
  • Key:GVZFUVXPTPGOQT-UHFFFAOYSA-M

Mitoquinone mesylate (MitoQ) is a synthetic analogue of coenzyme Q10 which has antioxidant effects. It was first developed in New Zealand in the late 1990s.[1] It has significantly improved bioavailability and improved mitochondrial penetration compared to coenzyme Q10,[2][3] and has shown potential in a number of medical indications,[4][5][6][7] being widely sold as a dietary supplement.[8][9]

A 2014 review found insufficient evidence for the use of mitoquinone mesylate in Parkinson's disease and other movement disorders.[10]

See also

[edit]

References

[edit]
  1. ^ US abandoned 20060229278, Taylor K, Smith R, "Mitoquinone derivatives used as mitochondrially targeted antioxidants.", published 12 October 2006, assigned to Antipodean Pharmaceuticals Inc 
  2. ^ Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, et al. (October 2018). "Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives". Acta Pharmaceutica Sinica B. 8 (6): 862–880. doi:10.1016/j.apsb.2018.05.006. PMC 6251809. PMID 30505656.
  3. ^ Gutierrez-Mariscal FM, Arenas-de Larriva AP, Limia-Perez L, Romero-Cabrera JL, Yubero-Serrano EM, López-Miranda J (October 2020). "Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases". International Journal of Molecular Sciences. 21 (21): 7870. doi:10.3390/ijms21217870. PMC 7660335. PMID 33114148.
  4. ^ Silva FS, Simoes RF, Couto R, Oliveira PJ (2016). "Targeting Mitochondria in Cardiovascular Diseases". Current Pharmaceutical Design. 22 (37): 5698–5717. doi:10.2174/1381612822666160822150243. PMID 27549376.
  5. ^ Kezic A, Spasojevic I, Lezaic V, Bajcetic M (2016). "Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury". Oxidative Medicine and Cellular Longevity. 2016: 2950503. doi:10.1155/2016/2950503. PMC 4894993. PMID 27313826.
  6. ^ Oliver DM, Reddy PH (April 2019). "Small molecules as therapeutic drugs for Alzheimer's disease". Molecular and Cellular Neurosciences. 96: 47–62. doi:10.1016/j.mcn.2019.03.001. PMC 6510253. PMID 30877034.
  7. ^ Ismail H, Shakkour Z, Tabet M, Abdelhady S, Kobaisi A, Abedi R, et al. (October 2020). "Traumatic Brain Injury: Oxidative Stress and Novel Anti-Oxidants Such as Mitoquinone and Edaravone". Antioxidants. 9 (10): 943. doi:10.3390/antiox9100943. PMC 7601591. PMID 33019512.
  8. ^ Braakhuis AJ, Nagulan R, Somerville V (2018). "The Effect of MitoQ on Aging-Related Biomarkers: A Systematic Review and Meta-Analysis". Oxidative Medicine and Cellular Longevity. 2018: 8575263. doi:10.1155/2018/8575263. PMC 6079400. PMID 30116495.
  9. ^ Thoma A, Akter-Miah T, Reade RL, Lightfoot AP (August 2020). "Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function". Biogerontology. 21 (4): 475–484. doi:10.1007/s10522-020-09883-x. PMC 7347670. PMID 32447556.
  10. ^ Liu J, Wang LN (January 2014). "Mitochondrial enhancement for neurodegenerative movement disorders: a systematic review of trials involving creatine, coenzyme Q10, idebenone and mitoquinone". CNS Drugs. 28 (1): 63–8. doi:10.1007/s40263-013-0124-4. PMID 24242074. S2CID 207486107.