Jump to content

Fritillaria

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
(Redirected from Mission bells)

Fritillaria
Fritillaria meleagris
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Order: Liliales
Family: Liliaceae
Subfamily: Lilioideae
Tribe: Lilieae
Genus: Fritillaria
Tourn. ex L.
Type species
Fritillaria meleagris
Subgenera
Diversity
About 140 species
Synonyms[2]
Synonyms
  • Petilium Ludw.
  • Imperialis Adans.
  • Amblirion Raf.
  • Rhinopetalum Fisch. ex D.Don
  • Baimo Raf.
  • Corona Fisch. ex Graham
  • Melorima Raf.
  • Eucrinum (Nutt.) Lindl.
  • Theresia K.Koch
  • Tozzettia Parl. 1854[a]
  • Liliorhiza Kellogg
  • Lyperia Salisb. nom. superfl.
  • Korolkowia Regel
  • Sarana Fisch. ex Baker
  • Ochrocodon Rydb.
  • Monocodon Salisb.
Floral diagram of Fritillaria flower

Fritillaria (fritillaries) is a genus of spring flowering herbaceous bulbous perennial plants in the lily family (Liliaceae). The type species, Fritillaria meleagris, was first described in Europe in 1571, while other species from the Middle East and Asia were also introduced to Europe at that time. The genus has about 130–140 species divided among eight subgenera. The flowers are usually solitary, nodding and bell-shaped with bulbs that have fleshy scales, resembling those of lilies. They are known for their large genome size and genetically are very closely related to lilies. They are native to the temperate regions of the Northern hemisphere, from the Mediterranean and North Africa through Eurasia and southwest Asia to western North America. Many are endangered due to enthusiastic picking.

The name Fritillaria is thought to refer to the checkered pattern of F. meleagris, resembling a box in which dice were carried. Fritillaries are commercially important in horticulture as ornamental garden plants and also in traditional Chinese medicine, which is also endangering some species. Fritillaria flowers have been popular subjects for artists to depict and as emblems of regions and organizations.

Description

[edit]
Morphology
Leaves and flower stem of Fritillaria drenovskii
Stem and leaves: F. drenovskii
Section through Fritillaria flower
Section through flower of F. meleagris
Inside flower of Fritillaria involucrata
Internal structures: F. involucrata

General

[edit]

Fritillaria is a genus of perennial herbaceous bulbiferous geophytes, dying back after flowering to an underground storage bulb from which they regrow in the following year.[3] It is characterised by nodding (pendant) flowers, perianths campanulate (bell- or cup-shaped) with erect segments in upper part, a nectarial pit, groove or pouch at the base of the tepal, anthers usually pseudobasifixed, rarely versatile, fruit sometimes winged, embryo minute.[4]

Specific

[edit]

Vegetative

[edit]
Bulbs

The bulbs are typically tunicate, consisting of a few tightly packed fleshy scales with a translucent tunic that disappears with further growth of the bulb. However, some species (F. imperialis, F. persica) have naked bulbs with many scales and loosely attached bulbils, resembling those of the closely related Lilium,[5] although F. persica has only a single scale.[4]

Stems and leaves

The stems have few or many cauline leaves (arising from the stem) that are opposite on the stem or verticillate (arranged in whorls), sometimes with a cirrhose apex (ending in a tendril).[4]

Reproductive

[edit]
Inflorescence and flowers

The inflorescence bears flowers that are often solitary and nodding, but some form umbels or have racemes with many flowers. The flowers are usually actinomorphic (radially symmetric), but weakly zygomorphic (single plane of symmetry) in F. gibbosa and F. ariana.[6] The campanulate perianth has six tepals, in two free whorls of three (trimerous), that can be white, yellow, green, purple or reddish. The erect segments are usually tesselated with squares of alternating light and dark colours. While the tepals are usually the same size in both whorls, in F. pallidiflora, the outer tepals are wider. The tepals have nectarial pits, grooves (F. sewerzowii) or pouches at their base. In F. persica the nectarial pouch is developed into a short spur. The perigonal nectaries are large and well developed, and in most species (with the exception of subgenus Rhinopetalum), are linear to lanceolate or ovate and weakly impressed upon the tepals.[4]

Gynoecium

The flowers are bisexual, containing both male (androecium) and female (gynoecium) characteristics. The pistil has three carpels (tricarpellary). The ovaries are hypogynous (superior, that is attached above the other floral parts). The ovule is anatropous in orientation and has two integuments (bitegmic), the micropyle (opening) being formed from the inner integument, while the nucellus is small. The embryo sac or megagametophyte is tetrasporic, in which all four megaspores survive. The style is trilobate to trifid (in 3 parts) and the surface of the stigma is wet.[4]

Androecium

Stamens are six, in two trimerous whorls of three, and diplostemonous (outer whorl of stamens opposite outer tepals and the inner whorl opposite inner tepals). Filaments filiform or slightly flattened, but sometimes papillose and rarely hairy (F. karelinii). Anthers are linear to ellipsoid, but rarely subglobose (F. persica) in shape, and their attachment to the filament is usually pseudobasifixed (connective tissue extends in a tube around the filament tip), rarely attached at the centre and free (dorsifixed versatile; F. fusca and some Liliorhiza species). In contrast, pseudobasifixed anthers can not move freely. The pollen grains are spheroidal and reticulate (net like pattern), with individual brochi (lumina within reticulations) of 4–5 μm.[4]

Fruit and seeds

The capsule is obovoid to globose, loculicidal and six-angled, sometimes with wings. The seeds are flattened with a marginal wing, the seed coat made out of both integuments, but the testa is thin and the endosperm lacks starch. The embryo is small.[4][7]

Phytochemistry

[edit]

Fritillaria, like other members of the family Liliaceae, contain flavonol glycosides and tri- and diferulic-acid sucrose esters,[4] steroidal alkaloids, saponins and terpenoids that have formed the active ingredients in traditional medicine (see Traditional medicine).[8] Certain species have flowers that emit disagreeable odors that have been referred to as phenolic, putrid, sulfurous, sweaty and skunky.[9] The scent of Fritillaria imperialis has been called "rather nasty", while that of F. agrestis, known commonly as stink bells, is reminiscent of canine feces. On the other hand, F. striata has a sweet fragrance.[10] The "foxy" odor of F. imperialis has been identified as 3-methyl-2-butene-1-thiol (dimethylallyl mercaptan), an alkylthiol.[11]

Genome

[edit]

Fritillaria represents one of the most extreme cases of genome size expansion in angiosperms. Polyploidy is rare, with nearly all species being diploid and only occasional reports of triploidy.[3] Reported genome size in Fritillaria vary from 1Cx (DNA content of unreplicated haploid chromosome complement) values of 30.15 to 85.38 Gb (Giga base pairs), that is > 190 times that of Arabidopsis thaliana, which has been called the "model plant"[3] and > 860 times that of Genlisea aurea, which represents the smallest land plant genome sequenced to date.[12] Giant genome size is generally defined as >35 pg (34 Gb).[13] The largest genomes in diploid Fritillaria are found in subgenus Japonica, exceeding 85 Gb.[3] At least one species, tetraploid F. assyriaca, has a very large genome. With approximately 127 pg (130 Gb), it was for a long time the largest known genome, exceeding the largest vertebrate animal genome known to date, that of the marbled lungfish (Protopterus aethiopicus), in size.[14] Heterochromatin levels vary by biogeographic region, with very little in Old World and abundant levels in New World species. Most species have a basic chromosome number of x=12, but x=9, 11 and 13 have been reported.[5]

Taxonomy

[edit]

History

[edit]

Pre-Linnaean

[edit]

Gerard (1597) states that Fritillaria was unknown to the ancients,[15] but certainly it was appearing in the writings of sixteenth century European botanists, including Dodoens (1574, 1583),[16][17] Lobelius (1576, 1581),[18][19] and Clusius (1583)[20] in addition to Gerard, and was mentioned by Shakespeare and other authors of the period (see Culture).[21] Species of Fritillaria were known in Persia (Iran) in the sixteenth century, from where they were taken to Turkey. European travelers then brought back specimens together with many other exotic eastern plants to the developing botanical gardens of Europe.[22] By the middle of the sixteenth century there was already a flourishing export trade of various bulbs from Turkey to Europe.[23] In Persia, the first mention in the literature was by Hakim Mo'men Tonekabon in his Tohfe Al-Mo'menin in 1080 AH (c. 1669 AD), who described the medicinal properties of F. imperialis (laleh sarnegoun).[24]

European fritillaries were documented in the wild amongst the Loire meadows in 1570 by Noël Capperon,[b] an Orléans apothecary. He mentioned them to Clusius in correspondence in 1571, and sent him a specimen of F. meleagris. He also corresponded with Dodoens.[26] Capperon suggested the name Fritillaria to Clusius, rather than the vernacular variegated lily (Lilium ou bulbum variegatum). He stated that the flower was known locally as Fritillaria because of a resemblance to the board used in playing checkers.[c] In recognition of this, the botanical authority is sometimes written Fritillaria (Caperon) L.[28][29][25]

The first account in a botanical text is by Dodoens in his Purgantium (1574)[16] and in more detail in Stirpium (1583).[17] In the Purgantium, Dodoens describes and illustrates F. meleagris as Meleagris flos, without mentioning Capperon.[30] He was also aware, through having been sent a picture, of F. imperialis, and decided to include it as well, without making a connection. His term for F. imperialis was Corona imperialis.[31][28]

Consequently, Lobelius, in his Plantarum (1576), gives Dodoens the credit for describing F. meleagris. He used the word "Fritillaria" for the first time, describing F. meleagris, which he considered to belong to the Lilio-Narcissus plants, including tulips. The term Lilio-Narcissus refers to an appearance of having lily-like flowers, but a narcissus-like bulb. He called it Fritillaria (synonyms Lilio-Narcissus purpurens variegatus or Meleagris flos Dodonaei).[32] Lobelius also included amongst the lilies, but not as Fritillaria, Corona imperialis which he mentions originated in Turkey and added what he referred to as Lilium persicum (Fritillaria persica).[33] In his later vernacular Kruydtboeck (1581) he described two species he considered related, Fritillaria Lilio-Narcissus purpurens variegatus and Lilio-Narcissus variegatus atropurpureus Xanctonicus. He acknowledged that the plant had originally been found near Orleans and then sent to the Netherlands. Fritillaria is ook een soort van lelie narcis die de oorsprong heeft uit het land van Orléans van waar dat ze gebracht is in Nederland.[d] In his own language he referred to it as Fritillaria of heel bruin gespikkelde Lelie-Narcisse.[e][34][35] He also included Corona imperialis and Lilium persicum as before.[36]

Dodoens had proposed the name Meleagris flos or Guinea-fowl flower, for what we now know as Fritillaria meleagris, after a resemblance to that bird's spotted plumage, then known as Meleagris avis. In the seventeenth century, John Parkinson provided an account of twelve species of what he referred to as Fritillaria - the checkered daffodil, in his Paradisus (1635), correctly placing it as closest to the lilies. He provides his version of Capperon's discovery, and suggests that some feel he should be honoured with the name Narcissus Caparonium.[37] Often when these exotic new plants entered the English language literature they lacked common names in the language. While Henry Lyte can only describe F. meleagris as Flos meleagris, Fritillaria or lilionarcissus, it appears that it was Shakespeare who applied the common name of "chequered".[38]

Although Clausius had corresponded with Capperon in 1571, he did not publish his account of European flora (other than Spain) till his Rariorum Pannoniam of 1583, where he gives an account of Capperon's discovery, noting the names, Fritillaria, Meleagris and Lilium variegatum. However he did not consider F. imperialis or F. persica to be related, calling both of them Lilium, Lilium persicum and Lilium susianum respectively.[20]

Post-Linnaean

[edit]

Although the first formal description is attributed to Joseph Pitton de Tournefort in 1694,[39][40] by convention, the first valid formal description is by Linnaeus, in his Species Plantarum (1753),.[1] Therefore, the botanical authority is given as Tourn. ex L..[2] Linnaeus identified five known species of Fritillaria, and grouped them in his Hexandria Monogynia (six stamens+one pistil), his system being based on sexual characteristics. These characteristics defined the core group of the family Liliaceae for a long time. Linnaeus' original species were F. imperialis, F. regia (now Eucomis regia), F. persica, F. pyrenaica and F. meleagris. The family Liliaceae was first described by Michel Adanson in 1763, placing Fritillaria in section Lilia of that family, but also considering Imperialis as a separate genus to Fritillaria, together with five other genera.[41] The formal description of the family is attributed to Antoine Laurent de Jussieu in 1789, who included eight genera, including Imperialis, in his Lilia.[42]

Although the circumscription of Liliaceae and its subdivisions have undergone considerable revision over the ensuing centuries, the close relationship between Fritillaria and Lilium the type genus of the family, have ensured that the former has remained part of the core group, which constitutes the modern much-reduced family. For instance, Bentham and Hooker (1883),[43] placed Fritillaria and Lilium in Liliaceae tribe Tulipeae, together with five other genera.

Phylogeny

[edit]

Fritillaria is generally considered a monophyletic genus, placed within the tribe Lilieae s.s., where it is a sister group to Lilium[5] and the largest member of that tribe.[44] The evolutionary and phylogenetic relationships between the genera currently included in Liliaceae are shown in the following Cladogram:

Cladogram: Phylogeny and biogeography of the genera of the Liliaceae
Liliaceae
Phylogenetic tree reflecting relationships based on molecular phylogenetic evidence.[45][46][47][48][49][50][51][52][5]
*=Liliaceae sensu Tamura; EA=Eurasia NA=North America

More recently, some larger phylogenetic studies of Lilieae, Lilium and Fritillaria have suggested that Fritillaria may actually consist of two distinct biogeographical clades (A and B), and that these are in a polytomous relationship with Lilium. This could mean that Fritillaria is actually two distinct genera, suggesting that the exact relationship is not yet fully resolved.[3][53]

Cladogram of polytomy within Lilieae s.s.[3]
Lilieae s.s.

Notholirion

Cardiocrinum

Lilium

Fritillaria A

Fritillaria B

Subdivision

[edit]
Fritillaria Imperialis in Dena, Iran
Fritillaria Imperialis in Dena, Iran

The large number of species have traditionally been divided into a number of subgroupings.[5] By 1828, Duby in his treatment of the flora of France, recognized two subgroups, which he called section Meleagris and section Petilium.[54] By 1874, Baker had divided 55 species into ten subgenera:[55]

In the 1880s, both Bentham and Hooker (1883)[43] and Boissier (1884)[56] independently simplified this by reducing nine of these subgenera to five, which they treated as sections rather than subgenera. Bentham and Hooker, who recognized more than 50 species, transferred the tenth of Baker's subgenera, Notholirion to Lilium. Boissier, by contrast, in his detailed account of oriental species, recognized Notholirion as a separate genus, whose status has been maintained since (see cladogram). He also divided Eufritillaria into subsections.

In the post-Darwinian era, Komarov (1935)[57] similarly segregated Rhinopetalum and Korolkowia as separate genera, but Turrill and Sealy (1980)[58] more closely followed Boissier, but further divided Eufritillaria and placed all American species in Liliorhiza. However, the best known and cited of these classification schemes based on plant morphology is that of Martyn Rix,[f] produced by the Fritillaria Group of the Alpine Garden Society[62] in 2001.[63] This listed 165 taxa grouped into 6 subgenera, 130 species, 17 subspecies, and 9 varieties.[64] Rix, who described eight subgenera in all, restored both Rhinopetalum and Korolkowia as subgenera. He also used series to further subdivide subgenera, kept Boissier's four sections, renamed Eufritillaria as Fritillaria, and added subgenera Davidii and Japonica. The largest of these is Fritillaria, while Theresia, Korolkowia and Davidii are monotypic (containing a single species).

Comparison of Three Subdivisions of Fritillaria1[5]
Baker (1874)[55]
Subgenera
Boissier (1882)2[g][56]
Sections
Rix (2001)[59]
Subgenera
Eufritillaria (2) Eufritillaria (30)
2 subsections
Fritillaria
2 sections
Monocodon (24)
Goniocarpa (5)
Amblirion (9)
Rhinopetalum (1) Theresia (2) Rhinopetalum (5)
Theresia (3) Theresia (1)3
Petilium (1) Petilium (1) Petilium (4)4
Liliorhiza (3) Liliorhiza
3 series
Korolkowia (1) Korolkowia (1)5
Davidii (1)6
Japonica (5)
Notholirion (2) Genus Genus
Notes

1. Number of species in (parentheses)
2. Boissier's Flora orientalis included only oriental species
3. Theresia: Fritillaria persica[65]
4. Petilium: F. chitralensis, F. eduardii, F. imperialis and F. raddeana.[66]
5. Korolkowia: F. sewerzowii

6. Davidii: F. davidii

Baker based his classification on the characteristics of the bulb, style, nectary and capsule valves. The large nectaries of Fritillaria have been the focus of much of the morphological classification, while the distinct form of the nectaries in Rhinopetalum were the basis for considering it a separate genus.[5]

Molecular phylogenetics

[edit]

The development of molecular phylogenetics and cladistic analysis has allowed a better understanding of the infrageneric relationships of Fritillaria species. Initial studies showed the major infrageneric split to be by biogeographic region into two clades, North America (clade A) and Eurasia (clade B). Clade A corresponded most closely with subgenus Liliorhiza.[67]

A subsequent study by Rønsted and colleagues (2005), using an expanded pool of taxa of 37 species including all of Rix's subgenera and sections, confirmed the initial split on the basis of geography and supported the broad division of the genus into Rix's eight subgenera but not the deeper relationships (sections and series). Clade A corresponds with subgenus Liliorhiza centred in California, but a number of species (F. camschatcensis - Japan and Siberia), F. maximowiczii and F. dagana - Russia) are also found in Western Asia. These Asian species form a grade with the true North American species, suggesting an origin in Asia followed by later dispersal. Of clade B, the Eurasian species, the largest subgenus, Fritillaria, appeared to be polyphyletic in that F. pallidiflora appeared to segregate in subclade B1, with subgenera Petillium, Korolkowia and Theresia while all other species formed a clade within B2.[5]

The phylogenetic, evolutionary and biogeographical relationships between the subgenera are shown in this cladogram:

Cladogram of infrageneric phylogeny and subgenera of Fritillaria (Rønsted et al 2005)
Fritillaria
A: North America

Liliorhiza

B: Eurasia

Davidii

B1

Fritillaria 1*

Theresia

Korolkowia

Petilium

B2

Japonica

Rhinopetalum

Fritillaria 2

* Fritillaria 1 refers to F. pallidiflora, which segregates in B1, thereby making subgenus Fritillaria polyphyletic

The number of taxa sampled was subsequently enlarged to 92 species (66% of all species), and all species in each subgenus except Rhinopetalum (80%), Liliorhiza and Fritillaria (60%). This expanded study further resolved the evolutionary relationships between the subgenera but also confirmed the polyphyletic nature of subgenus Fritillaria as shown in the following cladogram. The majority of taxa within this subgenus (Fritillaria 2) form a subclade centred in Europe, the Middle East and North Africa, but with some species ranging into China. The remainder (Fritillaria 1), being centred in China and Central Asia, but with some species ranging into North and South Asia. This group is therefore probably a separate subgenus.[68][3]

Cladogram of infrageneric phylogeny and subgenera of Fritillaria with evolutionary and biogeographical relationships (Rønsted et al 2005) and (Day et al 2014)
Fritillaria
A: N America,
NE Asia, China

Liliorhiza

B: Eurasia
China

Davidii

B1: M East,
C Asia, China
M East

Theresia

C Asia, China

Fritillaria 1

M East

Petilium

NW Asia

Korolkowia

B2
NW Asia

Rhinopetalum

Japan

Japonica

Europe, N Africa,
M East, China

Fritillaria 2

Subgenera

[edit]
Flower of Fritillaria affinis
Fritillaria affinis

Subgenus Liliorhiza (Kellog) Benth. & Hook.f.

[edit]

This subgenus of North American Fritillaria, centred on California constitutes Clade A and contains more than 20 species. They have distinctive bulbs with several imbricate (overlapping) scales. Their resemblance to the bulbs of Lilium lends this subgenus the name of Liliorhiza, or lily-roots. Most species exhibit loosely attached bulbils, whose size and shape gave them the name of "rice-grain bulbils". These are also seen in subgenus Davidii, but appear to have evolved independently. Stem leaves are whorled.[5][69]

Illustration of Fritillaria davidii
Fritillaria davidii

Subgenus Davidii Rix

[edit]

This Chinese subgenus is monotypic for F. davidii. It shares with Liliorhiza the presence of "rice-grain bulbils" but is distinguished from it by only having basal leaves, and no stem leaves.[5]

Flower of Fritillaria imperialis
Fritillaria imperialis

Subgenus Petilium (L.) Endl.

[edit]

Subgenus Petilium forms a subclade (B1), together with subgenera Korolkowia and Theresia. It is a relatively small subgenus of four species characterized by large (up to 100 cm) sturdy species, with bulbs that are much larger (up to 8 cm) than most Fritillaria with a few large, erect, imbricate and fleshy scales. Flowers are 3–5 in a terminal umbel, in the axils of the lower side of a leaf whorl. They have a trifid (3 lobed) style and winged seeds. The subgenus is found in Turkey, Iraq, Turkestan, Iran, Baluchistan, Afghanistan, and the western Himalayas. The best known example is F. imperialis (crown imperial).[5]

Flower of Fritillaria sewerzowii
Fritillaria sewerzowii

Subgenus Korolkowia Rix

[edit]

Korolkowia is monotypic for F. sewerzowii, a tall sturdy central Asian species, reaching 20–50 cm in height and bearing 8–10 more or less racemose flowers, with a large bulb consisting of a single 3–5 cm scale, and an entire style.[5]

Flower of Fritillaria persica
Fritillaria persica

Subgenus Theresia Koch

[edit]

Theresia is monotypic for F. persica. This western Asian species, like Korolkowia has a bulb with a single large fleshy scale, second only to F. imperialis in size. It has numerous racemose flowers (over 30) arising from a tall stem which may reach 100 cm. The style is entire.[5]

Flower of Fritillaria gibbosa
Fritillaria gibbosa

Subgenus Rhinopetalum Fisch.

[edit]

Rhinopetalum together with subgenera Japonica and Fritillaria constitute subclade B2. It is a small subgenus of five species. They are characterized by their nectaries, which are deeply impressed and have a slit-like orifice on the tepals.[5]

Flower of Fritillaria japonica
Fritillaria japonica

Subgenus Japonica Rix

[edit]

Japonica consists of eight species. Rix characterised the subgenus as follows: "Bulb of 2 or 3 solid scales, without rice grains; plants small and delicate; seeds pear-shaped, Erythronium-like, not flat; stem collapsing when seeds are ripe. Japanese woodland plants".

The species in this subgenus are dwarf fritillaries, endemic to Japan, bearing a single small campanulate flower on a slender stem with three linear verticillate (in one or more whorls) leaves at its top and two broader, oblong to elliptical and opposite leaves about 1 cm below these. The flower is born on a short pedicel amongst the leaves.[5][70]

Flower of Fritillaria meleagris
Fritillaria meleagris

Subgenus Fritillaria

[edit]

Fritillaria is the largest subgenus, with about 100 species, or more than 70% of the total number of species in the genus, and includes the type species, F. meleagris.[63] They are widely distributed from western Europe and the Mediterranean region to eastern Asia. Their characteristic is the Fritillaria-type bulb. This consists of two fleshy more or less tunicated scales that are subglobose. The tunica is formed by the remains of previous years' scales, but sometimes the previous scales persist leading to more than two scales, sometimes three or four. The style may be trifid or undivided, or only trilobulate at the apex (a characteristic that was previously thought to divide the subgenus into sections).[5]

Species

[edit]

The genus Fritillaria includes about 150 subordinate taxa, including species and subspecies.[71][72] Estimates of the number of species vary from about 100[73] through 130[74]–140.[3] The Plant List (2013) includes 141 accepted species names, and 156 taxa in total.[75]

Biogeography and evolution

[edit]

It is likely that two invasions across the Bering Straits to North America took place within the Lileae, one in each genus, Lilium and Fritillaria. Within the Eurasian clade, the two subclades differ in bulb type. In subclade B2 (Fritillaria, Rhinopetalum, and Japonica), the bulb type is described as Fritillaria-type, with 2–3 fleshy scales and the tunica derived from the remnants of previous year's scales. by contrast subclade B2 (Petilium, Theresia and Korolkowia) differ. Those of Theresia and Korolkowia are large, consisting of a single large fleshy scale, while Petilium species have several large erect imbricate scales. In Liliorhiza the bulbs are naked and have numerous scales similar to Lilium, but with numerous "rice-grain bulbils". The location of the bulbils differ from the more common aerial pattern of arising from within the axil of a leaf or inflorescence, as in Lilium and Allium. Similar bulbils are also found in Davidii. These bulbils arise in the axils of the scale leaves. Bulbils confer an evolutionary advantage in vegetative propagation. [5]

Etymology

[edit]

When Noël Capperon, an Orléans apothecary,[76] discovered F. meleagris growing in the Loire meadows in 1570, he wrote to Carolus Clusius, describing it, and saying that it was known locally as fritillaria, supposedly because the checkered pattern on the flower resembled the board on which checkers was played. Clusius believed this to be an error, in that fritillus is actually the Latin name for the box in which the dice used in the game were kept,[77] not the board itself.[78][20][79][80]

Some North American species are called "mission bells".

Distribution and habitat

[edit]
Map showing the distribution of ten species of Fritillaria in Europe and Asia
Distribution map of ten Fritillaria species in Europe and western and central Asia
Fritillaria Imperialis in Dena, Iran
Fritillaria Imperialis in Dena, Iran

Fritillaria are distributed in most temperate zone of the Northern Hemisphere, from western North America, through Europe, the Mediterranean, Middle East and Central Asia to China and Japan.[3][81][5][82] Centres of diversity include Turkey (39 species)[83] and the Zagros Mountains of Iran (14–15 species).[24][84] Iran is also the centre of diversity of species such as F. imperialis and F. persica.[85] There are five areas of particularly active evolution and clustering of species - California, Mediterranean Greece and Turkey, Anatolia and the Zagros mountains, central Asia from Uzbekistan to western Xinjiang and the eastern Himalayas in southwestern China.[71] Fritillaria species are found in a wide variety of climatic regions and habitats, but about half of them show a preference for full sun in open habitats.[5]

A number of Fritillaria are widely introduced. Cultivated fritillaries (F. meleagris) have been recorded in British gardens since 1578, but only in the wild since 1736, it is likely to be introduced, rather than be endemic. It is greatly diminished there due to loss of habitat, although persistent along the River Thames in Oxfordshire.[86][87][88] F. imperialis was introduced into Europe around the 1570s, with Ulisse Aldrovandi sending a drawing to Francesco de' Medici in Florence, famed for his gardens at Villa di Pratolino in 1578. His friend Jacopo Ligozzi (1547–1627) was also including it in his paintings, as well as F. persica.[89] In Britain, F. imperialis was first seen in the London garden of James Nasmyth, surgeon to King James I in April 1605.[90]

Ecology

[edit]

The majority of species are spring-flowering. Lily beetles (scarlet lily beetle, Lilioceris lilii and Lilioceris chodjaii) feed on fritillaries, and may become a pest where these plants are grown in gardens or commercially.[91]

Fritillaria are entomophilous (insect pollinated). Those species with large nectaries (4–12 x 1–4 mm) and have more fructose than glucose in the nectar are most commonly pollinated by wasps, while those with smaller nectaries (2–10 x 1–2 mm) and a more balanced nectar composition are most commonly pollinated by bumblebees.[4]

Conservation

[edit]

A number of species of Fritillaria are endangered, from over-harvesting, habitat fragmentation, over-grazing and international demand for herbals. These include many species in Greece,[72] and Fritillaria gentneri in the pacific Northwest of North America.[92] In Japan, five of the eight endemic species (subgenus Japonica) are listed as endangered.[70] In China, the collection of Fritillaria bulbs to make traditional medicine, particularly F. cirrhosa from southwest China and the eastern Himalayas of Bhutan and Nepal and one of the most intensively harvested of the alpine medicinal plants threatens extinction.[3]

In Iran, F. imperialis and F. persica are endangered and F. imperialis is protected. The genus is threatened by irregular grazing, change in pasture usage, pest (primarily Lilioceris chodjaii)[91] migration from pasture destruction, and harvesting by poor people for sale to florists.[24][85]

One species, F. delavayi, has begun to grow brown, greyish flowers to better camouflage amongst the rock of its habitat. Scientists believe it is evolving to combat its biggest predator — humans. Over-picking has greatly decreased the availability of this species in China and even though there is no known difference between the flowers picked in the wild and those grown commercially, hunters continue to believe the wild flowers offer better medicinal benefit.[93]

Toxicity

[edit]

Most fritillaries contain poisonous steroidal alkaloids such as imperialin in the bulbs and some may even be deadly if ingested in quantity.[4]

Uses

[edit]

The bulbs of a few species, such as F. affinis, F. camschatcensis, and F. pudica, are edible if prepared carefully. They were commonly eaten by indigenous peoples of the Pacific Northwest coast of North America.[94] The wild species flowering in areas such as Iran have become important for ecotourism, when in late May people come to the Valley of Roses, near Chelgerd, to see F. imperialis blooming.[95][24] The area is also rich in F. reuteri and F. gibbosa.[96][97]

Panoramic view of Fritillaria imperialis blooming in the Zagros Mountains in Iran
F. imperialis blooming in Sepidan, in the Zagros Mountains, Iran

Because of their large genome size, Fritillaria species are an important source for genomic studies of the processes involved in genome size diversity and evolution. They also have important commercial value both in horticulture and traditional medicine.[3]

Horticulture

[edit]

Species of Fritillaria are becoming increasingly popular as ornamental garden plants, and many species and cultivars are commercially available. They are usually grown from dormant bulbs planted in Autumn. As perennials they repeat flower every year, and some species will increase naturally. While Fritillaria is mainly harvested from the wild fields for commercial use, the growing price of the herbal product results in over-exploitation and puts the species at risk of depletion.[98]

The following may be most commonly found in cultivation:-

Traditional medicine

[edit]

Species of Fritillaria have been used in traditional medicine in China for over 2,000 years, and are one of the most widely used medicines today.[8] The production of medicines from F. cirrhosa is worth US$400 million per annum. Although some are cultivated for this purpose, most are gathered in the wild. In recent years demand has increased leading to over-harvesting of wild populations. In addition to China, Fritillaria products are used medicinally in the Himalayas, including India, Nepal and Pakistan, as well as Japan, Korea and Southeast Asia. To meet the demand additional countries such as Turkey and Burma are involved in the collection. The products are used mainly as antitussives, expectorants, and antihypertensives. The active ingredients are thought to be isosteroidal and steroidal alkaloid compounds. Chinese sources suggest 16 species as source material, but this may be an overestimate due to the large number of synonyms in Chinese. Of these, 15 are in subgenus Fritillaria (both subclades), but one (F. anhuiensis) is in subgenus Liliorhiza.[3][64][98] F. imperialis also has a long history of medicinal usage in China and Iran.[24]

Group of died bulbs of Fritillaria cirrhosa being prepared for making traditional medicine
Dried bulbs of F. cirrhosa

Fritillaria extracts (fritillaria in English, bulbus fritillariae cirrhosae in Latin)[99] are used in traditional Chinese medicine under the name chuan bei mu (literally "Shell mother from Sichuan",[99] or just beimu). Species such as F. cirrhosa, F. thunbergii and F. verticillata are used in cough remedies.[100][8] They are listed as chuān bèi (Chinese: 川貝/川贝) or zhè bèi (Chinese: 浙貝/浙贝), respectively, and are often in formulations combined with extracts of loquat (Eriobotrya japonica). Fritillaria verticillata bulbs are also traded as bèi mǔ or, in Kampō, baimo (Chinese/Kanji: 貝母, Katakana: バイモ). In one study fritillaria reduced airway inflammation by suppressing cytokines, histamines, and other compounds of inflammatory response.[101][98]

[edit]
Coat of arms of Großsteinbach in Austria, depicting a stylised flower of Fritillaria meleagris
Coat of arms of Großsteinbach, Austria

Shakespeare, Matthew Arnold and George Herbert and more recently Vita Sackville-West (The Land 1927) wrote romantically about fritillaries.[21][78][87] Fritillaries were also a favourite of the Dutch flower painters that emerged around 1600, such as Ambrosius Bosschaert[102] and Jacob de Gheyn II,[103] and appeared in Italian art, such as that of Jacopo Ligozzi in the late sixteenth century.[89]

Fritillaries are commonly used as floral emblems. F. meleagris (snake's head fritillary) is the county flower of Oxfordshire, UK, and the provincial flower of Uppland, Sweden, where it is known as kungsängslilja ("Kungsängen lily").[35] In Germany, F. meleagris appears as a heraldic device in a number of municipalities, such as Hetlingen, Seestermühe and Winseldorf, and also in Austria (Großsteinbach).

In Croatia this species is known as kockavica (from kocka, lit.'cube'), and the checkerboard pattern of its flowers may have inspired the checkerboard pattern on the nation's coat of arms. F. camschatcensis (Kamchatka fritillary) is the floral emblem of Ishikawa Prefecture and Obihiro City in Japan. Its Japanese name is kuroyuri (クロユリ), meaning "dark lily". Fritillaria montana is the floral emblem of Giardino Botanico Alpino di Pietra Corva, a botanical garden in Italy.[104]

See also

[edit]

Notes

[edit]
  1. ^ Tozzettia, illegitimate homonym not Savi 1799 (Poaceae)
  2. ^ Noel Capperon (Natalis Caperon), was one of the victims of the St Bartholomew's Day massacre of Huguenots in Orleans in 1572. Although not formally trained in botany, he had an international reputation. In the late 1560s, Thomas Penny, the English naturalist, came to visit him and study plant physiology.[25]
  3. ^ Letter from Capperon to Clusius, December 12, 1571: fritillaria ainsi appelions nous la plante que vous demandez pour ce les merques ou taches rouges et blanches sont que cees et posees en ordre comme sont celles de noz damiers et eschiquers aucunes pour ceste raison mesme luy donnent ces noms comme pyrgoides ou rhomboydes. Latruncularium.[27] Dames is the French word for Checkers or Draughts
  4. ^ Lobelius: Fritillaria is also a type of lily narcissus that originates from the land of Orléans from where it was brought to the Netherlands
  5. ^ Fritillaria, or the very brown speckled lily-narcissus
  6. ^ Martyn Rix's PhD thesis at Cambridge University was on Fritillaria,[59][60] and he is the botanical authority for 30 species of Fritillaria[61]
  7. ^ Boissier: Oriental species only, Lilorhiza excluded

References

[edit]
  1. ^ a b Linnaeus 1753.
  2. ^ a b WCSP 2017.
  3. ^ a b c d e f g h i j k l Day et al 2014.
  4. ^ a b c d e f g h i j Tamura 1998.
  5. ^ a b c d e f g h i j k l m n o p q r s Rønsted et al 2005.
  6. ^ Kiani, Mahmoud; Mohammadi, Shirin; Babaei, Alireza; Sefidkon, Fatemeh; Naghavi, Mohamad Reza; Ranjbar, Mojtaba; Razavi, Seyed Ali; Saeidi, Keramatollah; Jafari, Hadi; Asgari, Davoud; Potter, Daniel (October 2017). "Iran supports a great share of biodiversity and floristic endemism for Fritillaria spp. (Liliaceae): A review". Plant Diversity. 39 (5): 245–262. Bibcode:2017PlDiv..39..245K. doi:10.1016/j.pld.2017.09.002. PMC 6112302. PMID 30159518. S2CID 52121528.
  7. ^ Dahlgren et al 1985.
  8. ^ a b c Hao et al 2013.
  9. ^ Chiang 2016.
  10. ^ McGary 2012.
  11. ^ Helsper et al 2006.
  12. ^ Kelly et al 2015.
  13. ^ Leitch 2017.
  14. ^ Science Daily 2010.
  15. ^ Gerard 1597.
  16. ^ a b Dodoens 1574.
  17. ^ a b Dodonaei 1583.
  18. ^ l'Obel 1576.
  19. ^ l'Obel 1581.
  20. ^ a b c Clusius 1583.
  21. ^ a b Scarry 2016.
  22. ^ Pavord 2005, pp. 11–13
  23. ^ Pavord 1999.
  24. ^ a b c d e Bonyadi et al 2017.
  25. ^ a b Egmond 2010.
  26. ^ Franchet 1885.
  27. ^ Capperon 1571.
  28. ^ a b Griffiths 2015.
  29. ^ Raven 1947.
  30. ^ Dodoens 1574, pp. 395, 397
  31. ^ Dodoens 1574, pp. 472–473
  32. ^ l'Obel 1576, p. 65
  33. ^ l'Obel 1576, p. 86
  34. ^ l'Obel 1581, pp. 169–170
  35. ^ a b Volkoomen 2017.
  36. ^ l'Obel 1581, pp. 209–210
  37. ^ Parkinson 1635.
  38. ^ Jacobson 2014.
  39. ^ Tournefort 1694.
  40. ^ Tournefort 1719.
  41. ^ Adanson 1763, II Lilia p. 48
  42. ^ Jussieu 1789, IV Lilia pp. 48–49
  43. ^ a b Bentham & Hooker 1862–1883.
  44. ^ Peruzzi et al 2017.
  45. ^ Patterson & Givnish 2002.
  46. ^ Vinnersten & Bremer 2001.
  47. ^ Peruzzi et al 2009.
  48. ^ Leitch et al 2007.
  49. ^ Meerow 2012.
  50. ^ Stevens 2017, Liliales
  51. ^ Kim et al 2013a.
  52. ^ Kim et al 2013b.
  53. ^ Huang et al 2018.
  54. ^ Duby 1828.
  55. ^ a b Baker 1874.
  56. ^ a b Boissier 1884.
  57. ^ Komarov 1935.
  58. ^ Turrill & Sealy 1980.
  59. ^ a b Rix 1971.
  60. ^ CUBG 2017.
  61. ^ Plantlist 2016.
  62. ^ Fritillaria Group 2017.
  63. ^ a b Rix 2001.
  64. ^ a b Karakas Metin et al 2013.
  65. ^ Kiani et al 2017.
  66. ^ Wietsma et al 2014.
  67. ^ Fay & Chase 2000.
  68. ^ Day et al 2012.
  69. ^ Ryan & Simpson 2011.
  70. ^ a b Hill 2011.
  71. ^ a b Rix & Strange 2014.
  72. ^ a b Samaropoulou et al 2016.
  73. ^ Ness 2003.
  74. ^ FOC 2017.
  75. ^ TPL 2013.
  76. ^ Dubois, François Noël Alexandre (1894). Histoire du siège d'Orléans (in French). H. Herluison. p. 19. Dès les premières années du XVI° siècle, le pharmacien orléanais, Noël Capperon, découvrait, sur les bords du Loiret, la jolie fritillaire ()
  77. ^ Yates 1859.
  78. ^ a b Ellacombe 1895.
  79. ^ OED 2017.
  80. ^ Botts 2017.
  81. ^ Türktaş et al 2012.
  82. ^ Brickell 2016.
  83. ^ Alp et al 2009.
  84. ^ Advay & Sharifi-Tehrani 2016.
  85. ^ a b Ebrahimie et al 2006.
  86. ^ Mabey 1996.
  87. ^ a b Byfield 2013.
  88. ^ Larkin 2011.
  89. ^ a b Tomasi & Hirschauer 2002.
  90. ^ Pavord 2005, Chapter xx Note 9.
  91. ^ a b Ardakani 2014.
  92. ^ Gisler & Meinke 2003.
  93. ^ "This in-demand plant is evolving to hide from its predator—humans". Environment. 2021-02-08. Archived from the original on February 8, 2021. Retrieved 2021-02-09.
  94. ^ Turner & Kuhnlein 1983.
  95. ^ Badfar-Chaleshtori et al 2012.
  96. ^ Lonely Planet 2017.
  97. ^ Greentours 2017.
  98. ^ a b c Wang et al 2017.
  99. ^ a b Lenz & Frey 2005.
  100. ^ Zhang et al 2010.
  101. ^ Yeum et al 2007.
  102. ^ van Berkel 2010.
  103. ^ Boom 1975.
  104. ^ Pietra Corva 2017.

Bibliography

[edit]

Books and theses

[edit]

Historical sources (chronological)

[edit]

Fritillaria in culture

[edit]

Chapters

[edit]

Articles

[edit]

Regional

[edit]

Traditional medicine and pharmacology

[edit]

Subgenera

[edit]

Species

[edit]

Documents

[edit]

Websites

[edit]
Botanic gardens and herbaria
Databases
Flora
Organisations
Posters
[edit]