Kepler-33
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Cygnus |
Right ascension | 19h 16m 18.6100s[1] |
Declination | +46° 00′ 18.814″[1] |
Apparent magnitude (V) | 13.988 |
Characteristics | |
Spectral type | G1IV |
Astrometry | |
Radial velocity (Rv) | 12.18±3.65[1] km/s |
Proper motion (μ) | RA: −1.107(15) mas/yr[1] Dec.: −13.099(14) mas/yr[1] |
Parallax (π) | 0.8136 ± 0.0118 mas[1] |
Distance | 4,010 ± 60 ly (1,230 ± 20 pc) |
Details[2] | |
Mass | 1.26+0.03 −0.06 M☉ |
Radius | 1.66±0.03 R☉ |
Luminosity | 3.1+0.2 −0.1 L☉ |
Temperature | 5947±60 K |
Metallicity [Fe/H] | 0.14±0.04 dex |
Age | 4.2+1.3 −0.3 Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Kepler-33 is a star about 4,000 light-years (1,200 parsecs) in the constellation of Cygnus, with a system of five known planets. Having just begun to evolve off from the main sequence,[4] its radius and mass are difficult to ascertain, although data available in 2020 shows its best-fit mass of 1.3M☉ and radius of 1.6R☉ are compatible with a model of a subgiant star.[5]
Planetary system
[edit]The first detections of the candidate four-body planetary system were reported in February 2011.[6] On January 26, 2012, the planetary system around the star was confirmed, including a fifth planet.[4] However, unlike some other planets confirmed via Kepler, their masses were initially not known, as Doppler spectroscopy measurements were not done before the announcement. Judging by their radii, b may be a large super-Earth or small hot Neptune while the other four are all likely to be the latter. As of 2022[update], the masses of planets e & f have been measured, with upper limits on the masses of planets c & d. These mass measurements confirm Kepler-33 d, e & f to be low-density, gaseous planets.[2]
Planets b and c may actually be in a 7:3 resonance, as there is a 0.05 day discrepancy; there is also a small 0.18 day discrepancy between a 5:3 resonance between planets c and d. The other planets do not seem to be in any resonances, though near resonances are 3d:2e and 4e:3f.
The planetary system in its current configuration is highly susceptible to perturbations, therefore assuming stability, no additional giant planets can be located within 30 AU from the parent star.[7]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | — | 0.0673+0.0004 −0.0012 |
5.66816±0.00005 | <0.2 | >87.0° | 1.54+0.06 −0.05 R🜨 |
c | <19 M🜨 | 0.1181+0.0008 −0.0020 |
13.17552±0.00005 | <0.05 | >88.6° | 2.73±0.06 R🜨 |
d | <8.2 M🜨 | 0.165+0.001 −0.003 |
21.77574+0.00006 −0.00004 |
<0.03 | >89.02° | 4.67±0.09 R🜨 |
e | 6.6+1.1 −1.0 M🜨 |
0.212+0.001 −0.004 |
31.7852±0.0002 | <0.02 | 89.4±0.1° | 3.54+0.09 −0.07 R🜨 |
f | 8.2+1.6 −1.2 M🜨 |
0.252+0.002 −0.004 |
41.0274±0.0002 | <0.02 | 89.7+0.2 −0.1° |
3.96+0.09 −0.07 R🜨 |
See also
[edit]References
[edit]- ^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ a b c Sikora, James; Rowe, Jason; et al. (December 2022). "Refining the Masses and Radii of the Star Kepler-33 and its Five Transiting Planets". The Astronomical Journal. 164 (6): 242. arXiv:2211.00703. Bibcode:2022AJ....164..242S. doi:10.3847/1538-3881/ac98c4.
- ^ "Notes for star Kepler-33". Extrasolar Planets Encyclopaedia. Archived from the original on 2012-04-26. Retrieved 2012-02-01.
- ^ a b Lissauer, Jack J.; Marcy, Geoffrey W.; Rowe, Jason F.; Bryson, Stephen T.; Adams, Elisabeth; Buchhave, Lars A.; Ciardi, David R.; Cochran, William D.; Fabrycky, Daniel C.; Ford, Eric B.; Fressin, Francois; Geary, John; Gilliland, Ronald L.; Holman, Matthew J.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Morehead, Robert C.; Ragozzine, Darin; Seader, Shawn E.; Tanenbaum, Peter G.; Torres, Guillermo; Twicken, Joseph D. (10 May 2012). "Almost All of Kepler's Multiple Planet Candidates are Planets". The Astrophysical Journal. 750 (2): 112. arXiv:1201.5424. Bibcode:2012ApJ...750..112L. doi:10.1088/0004-637X/750/2/112. S2CID 30549908.
- ^ Berger, Travis A.; Huber, Daniel; van Saders, Jennifer L.; Gaidos, Eric; Tayar, Jamie; Kraus, Adam L. (2020), "The Gaia-Kepler Stellar Properties Catalog. I. Homogeneous Fundamental Properties for 186,301 Kepler Stars", The Astronomical Journal, 159 (6): 280, arXiv:2001.07737, Bibcode:2020AJ....159..280B, doi:10.3847/1538-3881/159/6/280, S2CID 210859307
- ^ Ford, Eric B.; Rowe, Jason F.; Fabrycky, Daniel C.; Carter, Joshua A.; Holman, Matthew J.; Lissauer, Jack J.; Ragozzine, Darin; Steffen, Jason H.; Batalha, Natalie M.; Borucki, William J.; Bryson, Steve; Caldwell, Douglas A.; Dunham, Edward W.; Gautier, Thomas N.; Jenkins, Jon M.; Koch, David G.; Li, Jie; Lucas, Philip; Marcy, Geoffrey W.; McCauliff, Sean; Mullally, Fergal R.; Quintana, Elisa; Still, Martin; Tenenbaum, Peter; Thompson, Susan E.; Twicken, Joseph D. (2011), "Transit Timing Observations from Kepler : I. Statistical Analysis of the First Four Months", The Astrophysical Journal Supplement Series, 197 (1): 2, arXiv:1102.0544, Bibcode:2011ApJS..197....2F, doi:10.1088/0067-0049/197/1/2, S2CID 118472942
- ^ Becker, Juliette C.; Adams, Fred C. (2017), "Effects of Unseen Additional Planetary Perturbers on Compact Extrasolar Planetary Systems", Monthly Notices of the Royal Astronomical Society, 468 (1): 549–563, arXiv:1702.07714, Bibcode:2017MNRAS.468..549B, doi:10.1093/mnras/stx461, S2CID 119325005