Jump to content

CD−34 8618

From Wikipedia, the free encyclopedia
(Redirected from KELT-13b)
CD−34°8618
Observation data
Epoch J2000.0      Equinox J2000.0 (ICRS)
Constellation Centaurus
Right ascension 13h 04m 10.53393s[1]
Declination −35° 32′ 58.3221″[1]
Apparent magnitude (V) 10.52±0.05[2]
Characteristics
Evolutionary stage main sequence[1]
Spectral type F1 V[3]
B−V color index +0.41[2]
Variable type suspected δ Scuti or γ Dor[3]
Astrometry
Radial velocity (Rv)−0.53±1.97[4] km/s
Proper motion (μ) RA: −18.553 mas/yr[1]
Dec.: +1.104 mas/yr[1]
Parallax (π)2.4238 ± 0.0303 mas[1]
Distance1,350 ± 20 ly
(413 ± 5 pc)
Details
Mass1.59±0.08[3] M
Radius1.94±0.08[5] R
Luminosity8.34[6] L
Surface gravity (log g)4.05±0.14[7] cgs
Temperature6,909[6] K
Metallicity [Fe/H]+0.1±0.1[3] dex
Rotation<1.81 d[3]
Rotational velocity (v sin i)52±2[7] km/s
Age1.29+0.36
−0.27
[3] Gyr
Other designations
CD−34°8618, CPD−34°5491 KELT-13, WASP-167
Database references
SIMBADdata

CD−34°8618, also known as KELT-13 or WASP-167, is a yellowish-white hued star located in the southern constellation of Centaurus. It has an apparent magnitude of 10.52,[2] making it readily visible in medium sized telescopes, but not to the naked eye. Based on parallax measurements from the Gaia spacecraft, the object is estimated to be approximately 1,350 light years away from the Solar System.[1] It appears to be drifting closer to it, having a radial velocity of −0.53 km/s.[4]

Description

[edit]

WASP-167 has a stellar classification of F1 V,[3] indicating that it is an ordinary F-type main-sequence star that is generating energy via hydrogen fusion at its core. At present it has 1.59 times the mass of the Sun[3] and 1.94 times the radius of the Sun.[5] It radiates 8.34 times the luminosity of the Sun[6] from its photosphere at an effective temperature of 6,909 K.[6] WASP-167 has an iron abundance 26% above solar levels,[3] making it metal enriched — common among planetary hosts. The object has completed 63% of its main sequence lifetime[1] at an age of 1 billion years.[3] Like many hot stars, WASP-167 spins rapidly, having a projected rotational velocity of 52 km/s,[7] meaning it completes a rotation under 2 days.[3]

Planetary system

[edit]

A Hot Jupiter was discovered in a tight, 2 day retrograde orbit the star by the SuperWASP and the KELT. WASP-167 was observed to have non-radial pulsations, which might be caused by the planet's close orbit. It has an equilibrium temperature of 2,329±64 K and is nearly tidally locked, similar to Mercury.[3]

The WASP-167/KELT-13 planetary system[3]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
WASP-167/KELT-13 b <8 MJ 0.0365±0.0006 2.0219570±0.0000007[8] 0 (assumed) 79.9±0.3° 1.58±0.05 RJ

References

[edit]
  1. ^ a b c d e f g Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ a b c Høg, E.; Fabricius, C.; Makarov, V. V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. (March 2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27–L30. Bibcode:2000A&A...355L..27H. ISSN 0004-6361.
  3. ^ a b c d e f g h i j k l m Temple, L. Y.; et al. (13 July 2017). "WASP-167b/KELT-13b: joint discovery of a hot Jupiter transiting a rapidly rotating F1V star". Monthly Notices of the Royal Astronomical Society. 471 (3): 2743–2752. arXiv:1704.07771. Bibcode:2017MNRAS.471.2743T. doi:10.1093/mnras/stx1729. eISSN 1365-2966. ISSN 0035-8711.
  4. ^ a b Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  5. ^ a b Stassun, Keivan G.; et al. (9 September 2019). "The Revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467. eISSN 1538-3881.
  6. ^ a b c d McDonald, I.; Zijlstra, A. A.; Watson, R. A. (15 June 2017). "Fundamental parameters and infrared excesses of Tycho–Gaia stars". Monthly Notices of the Royal Astronomical Society. 471 (1): 770–791. arXiv:1706.02208. Bibcode:2017MNRAS.471..770M. doi:10.1093/mnras/stx1433. eISSN 1365-2966. ISSN 0035-8711.
  7. ^ a b c Saffe, C.; Miquelarena, P.; Alacoria, J.; Flores, M.; Jaque Arancibia, M.; Calvo, D.; Martín Girardi, G.; Grosso, M.; Collado, A. (March 2021). "Chemical analysis of early-type stars with planets". Astronomy & Astrophysics. 647: A49. arXiv:2101.04416. Bibcode:2021A&A...647A..49S. doi:10.1051/0004-6361/202040132. eISSN 1432-0746. ISSN 0004-6361.
  8. ^ Kokori, A.; et al. (1 February 2022). "ExoClock Project. II. A Large-scale Integrated Study with 180 Updated Exoplanet Ephemerides". The Astrophysical Journal Supplement Series. 258 (2): 40. arXiv:2110.13863. Bibcode:2022ApJS..258...40K. doi:10.3847/1538-4365/ac3a10. eISSN 1538-4365. ISSN 0067-0049.