Jump to content

Igusa zeta function

From Wikipedia, the free encyclopedia
(Redirected from Igusa zeta-function)

In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, modulo p, p2, p3, and so on.

Definition

[edit]

For a prime number p let K be a p-adic field, i.e. , R the valuation ring and P the maximal ideal. For we denote by the valuation of z, , and for a uniformizing parameter π of R.

Furthermore let be a Schwartz–Bruhat function, i.e. a locally constant function with compact support and let be a character of .

In this situation one associates to a non-constant polynomial the Igusa zeta function

where and dx is Haar measure so normalized that has measure 1.

Igusa's theorem

[edit]

Jun-Ichi Igusa (1974) showed that is a rational function in . The proof uses Heisuke Hironaka's theorem about the resolution of singularities. Later, an entirely different proof was given by Jan Denef using p-adic cell decomposition. Little is known, however, about explicit formulas. (There are some results about Igusa zeta functions of Fermat varieties.)

Congruences modulo powers of P

[edit]

Henceforth we take to be the characteristic function of and to be the trivial character. Let denote the number of solutions of the congruence

.

Then the Igusa zeta function

is closely related to the Poincaré series

by

References

[edit]
  • Igusa, Jun-Ichi (1974), "Complex powers and asymptotic expansions. I. Functions of certain types", Journal für die reine und angewandte Mathematik, 1974 (268–269): 110–130, doi:10.1515/crll.1974.268-269.110, Zbl 0287.43007
  • Information for this article was taken from J. Denef, Report on Igusa's Local Zeta Function, Séminaire Bourbaki 43 (1990-1991), exp. 741; Astérisque 201-202-203 (1991), 359-386