Jump to content

Graphite intercalation compound

From Wikipedia, the free encyclopedia
KC8 (side view)
(side view)
KC8 (top view)
(top view)
Space-filling model of potassium graphite KC8.

In the area of solid state chemistry, graphite intercalation compounds are a family of materials prepared from graphite. In particular, the sheets of carbon that comprise graphite can be pried apart by the insertion (intercalation) of ions. The graphite is viewed as a host and the inserted ions as guests. The materials have the formula (guest)Cn where n ≥ 6. The insertion of the guests increases the distance between the carbon sheets. Common guests are reducing agents such as alkali metals. Strong oxidants also intercalate into graphite. Intercalation involves electron transfer into or out of the carbon sheets. So, in some sense, graphite intercalation compounds are salts. Intercalation is often reversible: the inserted ions can be removed and the sheets of carbon collapse to a graphite-like structure.

The properties of graphite intercalation compounds differ from those of the parent graphite.[1][2]

Preparation and structure

[edit]

These materials are prepared by treating graphite with a strong oxidant or a strong reducing agent:

C + m X → CXm

The reaction is reversible.

The host (graphite) and the guest X interact by charge transfer. An analogous process is the basis of commercial lithium-ion batteries.

In a graphite intercalation compound not every layer is necessarily occupied by guests. In so-called stage 1 compounds, graphite layers and intercalated layers alternate and in stage 2 compounds, two graphite layers with no guest material in between alternate with an intercalated layer. The actual composition may vary and therefore these compounds are an example of non-stoichiometric compounds. It is customary to specify the composition together with the stage. The layers are pushed apart upon incorporation of the guest ions.

Examples

[edit]

Alkali and alkaline earth derivatives

[edit]
Potassium graphite under argon in a Schlenk flask. A glass-coated magnetic stir bar is also present.

One of the best studied graphite intercalation compounds, KC8, is prepared by melting potassium over graphite powder. The potassium is absorbed into the graphite and the material changes color from black to bronze.[3] The resulting solid is pyrophoric.[4] The composition is explained by assuming that the potassium to potassium distance is twice the distance between hexagons in the carbon framework. The bond between anionic graphite layers and potassium cations is ionic. The electrical conductivity of the material is greater than that of α-graphite.[4][5] KC8 is a superconductor with a very low critical temperature Tc = 0.14 K.[6] Heating KC8 leads to the formation of a series of decomposition products as the K atoms are eliminated:[citation needed]

3 KC8 → KC24 + 2 K

Via the intermediates KC24 (blue in color),[3] KC36, KC48, ultimately the compound KC60 results.

The stoichiometry MC8 is observed for M = K, Rb and Cs. For smaller ions M = Li+, Sr2+, Ba2+, Eu2+, Yb3+, and Ca2+, the limiting stoichiometry is MC6.[6] Calcium graphite CaC6 is obtained by immersing highly oriented pyrolytic graphite in liquid Li–Ca alloy for 10 days at 350 °C. The crystal structure of CaC6 belongs to the R3m space group. The graphite interlayer distance increases upon Ca intercalation from 3.35 to 4.524 Å, and the carbon-carbon distance increases from 1.42 to 1.444 Å.

Structure of CaC6

With barium and ammonia, the cations are solvated, giving the stoichiometry (Ba(NH3)2.5C10.9(stage 1)) or those with caesium, hydrogen and potassium (CsC8·K2H4/3C8(stage 1)).[clarification needed]

In situ adsorption on free-standing graphene and intercalation in bilayer graphene of the alkali metals K, Cs, and Li was observed by means of low-energy electron microscopy.[7]

Different from other alkali metals, the amount of Na intercalation is very small. Quantum-mechanical calculations show that this originates from a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same group of the periodic table.[8] The phenomenon arises from the competition between trends in the ionization energy and the ion–substrate coupling, down the columns of the periodic table.[8] However, considerable Na intercalation into graphite can occur in cases when the ion is wrapped in a solvent shell through the process of co-intercalation. A complex magnesium(I) species has also been intercalated into graphite.[9]

Graphite bisulfate, perchlorate, hexafluoroarsenate: oxidized carbons

[edit]

The intercalation compounds graphite bisulfate and graphite perchlorate can be prepared by treating graphite with strong oxidizing agents in the presence of strong acids. In contrast to the potassium and calcium graphites, the carbon layers are oxidized in this process:

48 C + 0.25 O2 + 3 H2SO4 → [C24]+[HSO4]·2H2SO4 + 0.5 H2O[clarification needed]

In graphite perchlorate, planar layers of carbon atoms are 794 picometers apart, separated by ClO4 ions. Cathodic reduction of graphite perchlorate is analogous to heating KC8, which leads to a sequential elimination of HClO4.

Both graphite bisulfate and graphite perchlorate are better conductors as compared to graphite, as predicted by using a positive-hole mechanism.[4] Reaction of graphite with [O2]+[AsF6] affords the salt [C8]+[AsF6].[4]

Metal halide derivatives

[edit]

A number of metal halides intercalate into graphite. The chloride derivatives have been most extensively studied. Examples include MCl2 (M = Zn, Ni, Cu, Mn), MCl3 (M = Al, Fe, Ga), MCl4 (M = Zr, Pt), etc.[1] The materials consists of layers of close-packed metal halide layers between sheets of carbon. The derivative C~8FeCl3 exhibits spin glass behavior.[10] It proved to be a particularly fertile system on which to study phase transitions.[citation needed] A stage n magnetic graphite intercalation compounds has n graphite layers separating successive magnetic layers. As the stage number increases the interaction between spins in successive magnetic layers becomes weaker and 2D magnetic behaviour may arise.

Halogen- and oxide-graphite compounds

[edit]

Chlorine and bromine reversibly intercalate into graphite. Iodine does not. Fluorine reacts irreversibly. In the case of bromine, the following stoichiometries are known: CnBr for n = 8, 12, 14, 16, 20, and 28.

Because it forms irreversibly, carbon monofluoride is often not classified as an intercalation compound. It has the formula (CF)x. It is prepared by reaction of gaseous fluorine with graphitic carbon at 215–230 °C. The color is greyish, white, or yellow. The bond between the carbon and fluorine atoms is covalent. Tetracarbon monofluoride (C4F) is prepared by treating graphite with a mixture of fluorine and hydrogen fluoride at room temperature. The compound has a blackish-blue color. Carbon monofluoride is not electrically conductive. It has been studied as a cathode material in one type of primary (non-rechargeable) lithium batteries.

Graphite oxide is an unstable yellow solid.

Properties and applications

[edit]

Graphite intercalation compounds have fascinated materials scientists for many years owing to their diverse electronic and electrical properties.

Superconductivity

[edit]

Among the superconducting graphite intercalation compounds, CaC6 exhibits the highest critical temperature Tc = 11.5 K, which further increases under applied pressure (15.1 K at 8 GPa).[6] Superconductivity in these compounds is thought to be related to the role of an interlayer state, a free electron like band lying roughly 2 eV (0.32 aJ) above the Fermi level; superconductivity only occurs if the interlayer state is occupied.[11] Analysis of pure CaC6 using a high quality ultraviolet light revealed to conduct angle-resolved photoemission spectroscopy measurements. The opening of a superconducting gap in the π* band revealed a substantial contribution to the total electron–phonon-coupling strength from the π*-interlayer interband interaction.[11]

Reagents in chemical synthesis: KC8

[edit]

The bronze-colored material KC8 is one of the strongest reducing agents known. It has also been used as a catalyst in polymerizations and as a coupling reagent for aryl halides to biphenyls.[12] In one study, freshly prepared KC8 was treated with 1-iodododecane delivering a modification (micrometre scale carbon platelets with long alkyl chains sticking out providing solubility) that is soluble in chloroform.[12] Another potassium graphite compound, KC24, has been used as a neutron monochromator. A new essential application for potassium graphite was introduced by the invention of the potassium-ion battery. Like the lithium-ion battery, the potassium-ion battery should use a carbon-based anode instead of a metallic anode. In this circumstance, the stable structure of potassium graphite is an important advantage.

See also

[edit]

References

[edit]
  1. ^ a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. ^ H-P Boehm; Setton, R.; Stumpp, E.; et al. (1994). "Nomenclature and terminology of graphite intercalation compounds" (PDF). Pure and Applied Chemistry (PDF). 66 (9): 1893. doi:10.1351/pac199466091893. S2CID 98227391. Archived from the original (PDF) on 2012-04-06.
  3. ^ a b Ottmers, D.M.; Rase, H.F. (1966). "Potassium graphites prepared by mixed-reaction technique". Carbon. 4 (1): 125–127. doi:10.1016/0008-6223(66)90017-0. ISSN 0008-6223.
  4. ^ a b c d Catherine E. Housecroft; Alan G. Sharpe (2008). "Chapter 14: The group 14 elements". Inorganic Chemistry, 3rd Edition. Pearson. p. 386. ISBN 978-0-13-175553-6.
  5. ^ NIST Ionizing Radiation Division 2001 – Major Technical Highlights. physics.nist.gov
  6. ^ a b c Emery, N.; Hérold, Claire; Marêché, Jean-François; Lagrange, Philippe; et al. (2008). "Review: Synthesis and superconducting properties of CaC6". Science and Technology of Advanced Materials (PDF). 9 (4): 044102. Bibcode:2008STAdM...9d4102E. doi:10.1088/1468-6996/9/4/044102. PMC 5099629. PMID 27878015.
  7. ^ Lorenzo, Marianna; Escher, Conrad; Latychevskaia, Tatiana; Fink, Hans-Werner (2018-05-07). "Metal Adsorption and Nucleation on Free-Standing Graphene by Low-Energy Electron Point Source Microscopy". Nano Letters. 18 (6). American Chemical Society (ACS): 3421–3427. arXiv:2301.10548. Bibcode:2018NanoL..18.3421L. doi:10.1021/acs.nanolett.8b00359. PMID 29733660.
  8. ^ a b Liu, Yuanyue; Merinov, Boris V.; Goddard, William A. (5 April 2016). "Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals". Proceedings of the National Academy of Sciences. 113 (14): 3735–3739. arXiv:1604.03602. Bibcode:2016PNAS..113.3735L. doi:10.1073/pnas.1602473113. PMC 4833228. PMID 27001855.
  9. ^ Xu, Wei; Zhang, Hanyang; Lerner, Michael M. (2018-06-25). "Graphite Intercalation by Mg Diamine Complexes". Inorganic Chemistry. 57 (14). American Chemical Society (ACS): 8042–8045. doi:10.1021/acs.inorgchem.8b01250. ISSN 0020-1669. PMID 29939016. S2CID 49412174.
  10. ^ Millman, S E; Zimmerman, G O (1983). "Observation of spin glass state in FeCl3: intercalated graphite". Journal of Physics C: Solid State Physics. 16 (4): L89. Bibcode:1983JPhC...16L..89M. doi:10.1088/0022-3719/16/4/001.
  11. ^ a b Csányi; Littlewood, P. B.; Nevidomskyy, Andriy H.; Pickard, Chris J.; Simons, B. D.; et al. (2005). "The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds". Nature Physics. 1 (1): 42–45. arXiv:cond-mat/0503569. Bibcode:2005NatPh...1...42C. doi:10.1038/nphys119. S2CID 6764457.
  12. ^ a b Chakraborty, S.; Chattopadhyay, Jayanta; Guo, Wenhua; Billups, W. Edward; et al. (2007). "Functionalization of Potassium Graphite". Angewandte Chemie International Edition. 46 (24): 4486–8. doi:10.1002/anie.200605175. PMID 17477336.

Further reading

[edit]