Jump to content

List of quantum processors

From Wikipedia, the free encyclopedia
(Redirected from Google Willow)

This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published physical qubit numbers do not reflect the performance levels of the processor. This is instead achieved through the number of logical qubits or benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]

Circuit-based quantum processors

[edit]

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

Manufacturer Name/codename

designation

Architecture Layout Fidelity (%) Qubits (physical) Release date Quantum volume
Alpine Quantum Technologies PINE System[2] Trapped ion 24[3] June 7, 2021 128[4]
Atom Computing Phoenix Neutral atoms in optical lattices 100[5] August 10, 2021
Atom Computing N/A Neutral atoms in optical lattices 35×35 lattice (with 45 vacancies) < 99.5 (2 qubits)[6] 1180[7][8] October 2023
Google N/A Superconducting N/A 99.5[9] 20 2017
Google N/A Superconducting 7×7 lattice 99.7[9] 49[10] Q4 2017 (planned)
Google Bristlecone Superconducting transmon 6×12 lattice 99 (readout)
99.9 (1 qubit)
99.4 (2 qubits)
72[11][12] March 5, 2018
Google Sycamore Superconducting transmon 9×6 lattice N/A 53 effective (54 total) 2019
Google Willow Superconducting transmon N/A 105 December 2024[13]
IBM IBM Q 5 Tenerife Superconducting bow tie 99.897 (average gate)
98.64 (readout)
5 2016[9]
IBM IBM Q 5 Yorktown Superconducting bow tie 99.545 (average gate)
94.2 (readout)
5
IBM IBM Q 14 Melbourne Superconducting N/A 99.735 (average gate)
97.13 (readout)
14
IBM IBM Q 16 Rüschlikon Superconducting 2×8 lattice 99.779 (average gate)
94.24 (readout)
16[14] May 17, 2017
(Retired: 26 September 2018)[15]
IBM IBM Q 17 Superconducting N/A N/A 17[14] May 17, 2017
IBM IBM Q 20 Tokyo Superconducting 5×4 lattice 99.812 (average gate)
93.21 (readout)
20[16] November 10, 2017
IBM IBM Q 20 Austin Superconducting 5×4 lattice N/A 20 (Retired: 4 July 2018)[15]
IBM IBM Q 50 prototype Superconducting transmon N/A N/A 50[16]
IBM IBM Q 53 Superconducting N/A N/A 53 October 2019
IBM IBM Eagle Superconducting transmon N/A N/A 127[17] November 2021
IBM IBM Osprey[7][8] Superconducting N/A N/A 433[17] November 2022
IBM IBM Condor[18][7] Superconducting Honeycomb[19] N/A 1121[17] December 2023
IBM IBM Heron[18][7] Superconducting N/A N/A 133 December 2023
IBM IBM Heron R2[20] Superconducting Heavy hex 96.5 (2 qubits) 156 November 2024
IBM IBM Armonk[21] Superconducting Single Qubit N/A 1 October 16, 2019
IBM IBM Ourense[21] Superconducting T N/A 5 July 3, 2019
IBM IBM Vigo[21] Superconducting T N/A 5 July 3, 2019
IBM IBM London[21] Superconducting T N/A 5 September 13, 2019
IBM IBM Burlington[21] Superconducting T N/A 5 September 13, 2019
IBM IBM Essex[21] Superconducting T N/A 5 September 13, 2019
IBM IBM Athens[22] Superconducting N/A 5 32[23]
IBM IBM Belem[22] Superconducting Falcon r4T[24] N/A 5 16[24]
IBM IBM Bogotá[22] Superconducting Falcon r4L[24] N/A 5 32[24]
IBM IBM Casablanca[22] Superconducting Falcon r4H[24] N/A 7 (Retired – March 2022) 32[24]
IBM IBM Dublin[22] Superconducting N/A 27 64
IBM IBM Guadalupe[22] Superconducting Falcon r4P[24] N/A 16 32[24]
IBM IBM Kolkata Superconducting N/A 27 128
IBM IBM Lima[22] Superconducting Falcon r4T[24] N/A 5 8[24]
IBM IBM Manhattan[22] Superconducting N/A 65 32[23]
IBM IBM Montreal[22] Superconducting Falcon r4[24] N/A 27 128[24]
IBM IBM Mumbai[22] Superconducting Falcon r5.1[24] N/A 27 128[24]
IBM IBM Paris[22] Superconducting N/A 27 32[23]
IBM IBM Quito[22] Superconducting Falcon r4T[24] N/A 5 16[24]
IBM IBM Rome[22] Superconducting N/A 5 32[23]
IBM IBM Santiago[22] Superconducting N/A 5 32[23]
IBM IBM Sydney[22] Superconducting Falcon r4[24] N/A 27 32[24]
IBM IBM Toronto[22] Superconducting Falcon r4[24] N/A 27 32[24]
Intel 17-Qubit Superconducting Test Chip Superconducting 40-pin cross gap N/A 17[25][26] October 10, 2017
Intel Tangle Lake Superconducting 108-pin cross gap N/A 49[27] January 9, 2018
Intel Tunnel Falls Semiconductor spin qubits 12[28] June 15, 2023
IonQ Harmony Trapped ion All-to-All[24] 99.73 (1 qubit)

90.02 (2 qubit) 99.30 (SPAM)

11[29] 2022 8[24]
IonQ Aria Trapped ion All-to-All[24] 99.97 (1 qubit)

98.33 (2 qubit) 98.94 ((SPAM)

25[29] 2022
IonQ Forte Trapped ion 366x1 chain[30] All-to-All[24] 99.98 (1 qubit)
98.5–99.3 (2 qubit)[30]99.56 ((SPAM)
36[29] (earlier 32) 2022
IQM - Superconducting Star 99.91 (1 qubit)
99.14 (2 qubits)
5[31] November 30, 2021[32] N/A
IQM - Superconducting Square lattice 99.91 (1 qubit median)
99.944 (1 qubit max)
98.25 (2 qubits median)
99.1 (2 qubits max)
20 October 9, 2023[33] 16[34]
M Squared Lasers Maxwell Neutral atoms in optical lattices 99.5 (3-qubit gate), 99.1 (4-qubit gate)[35] 200[36] November 2022
Oxford Quantum Circuits Lucy[37] Superconducting 8 2022
Oxford Quantum Circuits OQC Toshiko[38] Superconducting 32 2023
Quandela Ascella Photonics N/A 99.6 (1 qubit)
93.8 (2 qubits)
86.0 (3 qubits)
6[39] 2022[40]
QuTech at TU Delft Spin-2 Semiconductor spin qubits 99 (average gate)
85 (readout)[41]
2 2020
QuTech at TU Delft - Semiconductor spin qubits 6[42] September 2022
QuTech at TU Delft Starmon-5 Superconducting X configuration 97 (readout)[43] 5 2020
Quantinuum H2[44] Trapped ion Racetrack, All-to-All 99.997 (1 qubit)
99.87 (2 qubit)
56[45] (earlier 32) May 9, 2023 2,097,152[46]
Quantinuum H1-1[47] Trapped ion 15×15 (Circuit Size) 99.996 (1 qubit)
99.914 (2 qubit)
20 2022 1,048,576[48]
Quantinuum H1-2 [47] Trapped ion All-to-All[24] 99.996 (1 qubit)
99.7 (2 qubit)
12 2022 4096[49]
Quantware Soprano[50] Superconducting 99.9 (single-qubit gates) 5 July 2021
Quantware Contralto[51] Superconducting 99.9 (single-qubit gates) 25 March 7, 2022[52]
Quantware Tenor[53] Superconducting 64 February 23, 2023
Rigetti Agave Superconducting N/A 96 (Single-qubit gates)

87 (Two-qubit gates)

8 June 4, 2018[54]
Rigetti Acorn Superconducting transmon N/A 98.63 (Single-qubit gates)

87.5 (Two-qubit gates)

19[55] December 17, 2017
Rigetti Aspen-1 Superconducting N/A 93.23 (Single-qubit gates)

90.84 (Two-qubit gates)

16 November 30, 2018[54]
Rigetti Aspen-4 Superconducting 99.88 (Single-qubit gates)

94.42 (Two-qubit gates)

13 March 10, 2019
Rigetti Aspen-7 Superconducting 99.23 (Single-qubit gates)

95.2 (Two-qubit gates)

28 November 15, 2019
Rigetti Aspen-8 Superconducting 99.22 (Single-qubit gates)

94.34 (Two-qubit gates)

31 May 5, 2020
Rigetti Aspen-9 Superconducting 99.39 (Single-qubit gates)

94.28 (Two-qubit gates)

32 February 6, 2021
Rigetti Aspen-10 Superconducting 99.37 (Single-qubit gates)

94.66 (Two-qubit gates)

32 November 4, 2021
Rigetti Aspen-11 Superconducting Octagonal[24] 99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY) 40 December 15, 2021
Rigetti Aspen-M-1 Superconducting transmon Octagonal[24] 99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY) 80 February 15, 2022 8[24]
Rigetti Aspen-M-2 Superconducting transmon 99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY) 80 August 1, 2022
Rigetti Aspen-M-3 Superconducting transmon N/A 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY) 80[56] December 2, 2022
Rigetti Ankaa-2 Superconducting transmon N/A 98 (Two-qubit gates) 84[57] December 20, 2023
RIKEN RIKEN[58] Superconducting N/A N/A 53 effective (64 total)[59][60] March 27, 2023 N/A
SaxonQ Princess Nitrogen-vacancy center 4[61] June 26, 2024
SpinQ Triangulum Nuclear magnetic resonance 3[62] September 2021
USTC Jiuzhang Photonics N/A N/A 76[63][64] 2020
USTC Zuchongzhi Superconducting N/A N/A 62[65] 2020
USTC Zuchongzhi 2.1 Superconducting lattice[66] 99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout) 66[67] 2021
Xanadu Borealis[68] Photonics (Continuous-variable) N/A N/A 216[68] 2022[68]
Xanadu X8 [69] Photonics (Continuous-variable) N/A N/A 8 2020
Xanadu X12 Photonics (Continuous-variable) N/A N/A 12 2020[69]
Xanadu X24 Photonics (Continuous-variable) N/A N/A 24 2020[69]
CAS Xiaohong[70] Superconducting N/A N/A 504[70] 2024

Annealing quantum processors

[edit]

These QPUs are based on quantum annealing, not to be confused with digital annealing.[71]

Manufacturer Name/Codename

/Designation

Architecture Layout Fidelity (%) Qubits Release date
D-Wave D-Wave One (Rainier) Superconducting C4 = Chimera(4,4,4)[72] = 4×4 K4,4 N/A 128 May 11, 2011
D-Wave D-Wave Two Superconducting C8 = Chimera(8,8,4)[72] = 8×8 K4,4 N/A 512 2013
D-Wave D-Wave 2X Superconducting C12 = Chimera(12,12,4)[72] = 12×12 K4,4 N/A 1152 2015
D-Wave D-Wave 2000Q Superconducting C16 = Chimera(16,16,4)[72] = 16×16 K4,4 N/A 2048 2017
D-Wave D-Wave Advantage Superconducting Pegasus P16[73] N/A 5760 2020
D-Wave D-Wave Advantage 2[74][75][76][77] Superconducting[74][75] Zephyr Z15[77][78] N/A 7440[79] Late 2024 either 2025[74][75][76][77][78]

Analog quantum processors

[edit]

These QPUs are based on analog Hamiltonian simulation.

Manufacturer Name/Codename/Designation Architecture Layout Fidelity (%) Qubits Release date
QuEra Aquila Neutral atoms N/A N/A 256[80] November 2022

See also

[edit]

References

[edit]
  1. ^ Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
  2. ^ "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". AQT. Retrieved 21 Feb 2023.
  3. ^ Pogorelov, I.; Feldker, T.; Et, al. (2021-06-07). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2): 020343. arXiv:2101.11390. Bibcode:2021PRXQ....2b0343P. doi:10.1103/PRXQuantum.2.020343. S2CID 231719119.
  4. ^ "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". AQT. 8 February 2023. Retrieved 24 Feb 2023.
  5. ^ Barnes, Katrina; Battaglino, Peter; Et, al. (2022). "Assembly and coherent control of a register of nuclear spin qubits". Nature Communications. 13 (1): 2779. arXiv:2108.04790. Bibcode:2022NatCo..13.2779B. doi:10.1038/s41467-022-29977-z. PMC 9120523. PMID 35589685. S2CID 236965948.
  6. ^ Atom Computing Previews an 1180 Qubit Neutral Atom Processor, Quantum Computing Report
  7. ^ a b c d Padavic-Callaghan, Karmela (December 9, 2023). "IBM unveils 1000-qubit computer". New Scientist. p. 13.
  8. ^ a b Wilkins, Alex (October 24, 2023). "Record-breaking quantum computer has more than 1000 qubits". New Scientist. Retrieved 2024-01-01.
  9. ^ a b c Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. Retrieved 2017-10-18.
  10. ^ Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. Retrieved 2017-10-18.
  11. ^ "A Preview of Bristlecone, Google's New Quantum Processor", Research (World wide web log), Google, March 2018.
  12. ^ Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. Retrieved 2018-06-27.
  13. ^ Neven, Hartmut (9 December 2024). "Meet Willow, our state-of-the-art quantum chip". Google. Retrieved 10 December 2024.
  14. ^ a b "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. Archived from the original on May 22, 2017. Retrieved 2017-10-18.
  15. ^ a b "Quantum devices & simulators". IBM Q. 2018-06-05. Retrieved 2019-03-29.
  16. ^ a b "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. Archived from the original on November 10, 2017. Retrieved 10 November 2017.
  17. ^ a b c Brooks, Michael (January–February 2024). "Bring on the noise". MIT Technology Review. Vol. 127, no. 1. Cambridge, Massachusetts. p. 50.
  18. ^ a b "IBM's 'Condor' quantum computer has more than 1000 qubits". New Scientist. Retrieved 2023-12-21.
  19. ^ https://arxiv.org/abs/2410.00916
  20. ^ "IBM Quantum delivers on 2022 100x100 performance challenge | IBM Quantum Computing Blog". www.ibm.com. Retrieved 2024-11-25.
  21. ^ a b c d e f "IBM Q Experience". IBM Q Experience. Retrieved 2020-01-04.
  22. ^ a b c d e f g h i j k l m n o p "IBM Quantum". IBM Quantum. Retrieved 2023-06-18.
  23. ^ a b c d e "IBM Blog". IBM Blog. Retrieved 2023-06-18.
  24. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan (2022). "Quantum Volume in Practice: What Users Can Expect from NISQ Devices". IEEE Transactions on Quantum Engineering. 3: 1–19. arXiv:2203.03816. doi:10.1109/TQE.2022.3184764. ISSN 2689-1808. S2CID 247315182.
  25. ^ "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". 2017-10-10. Retrieved 2017-10-18.
  26. ^ Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. Retrieved 2017-10-18.
  27. ^ "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. Retrieved 2018-01-14.
  28. ^ "Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing". Intel Newsroom. Retrieved 2023-07-09.
  29. ^ a b c "IonQ | Trapped Ion Quantum Computing". IonQ. Retrieved 2023-05-02.
  30. ^ a b Egan, Laird; Debroy, Dripto M.; Noel, Crystal; Risinger, Andrew; Zhu, Daiwei; Biswas, Debopriyo; Newman, Michael; Li, Muyuan; Brown, Kenneth R.; Cetina, Marko; Monroe, Christopher (2020). "Fault-Tolerant Operation of a Quantum Error-Correction Code". arXiv:2009.11482 [quant-ph].
  31. ^ "The Power of Co-Design, Hermanni Heimonen, IQM". Youtube. 2022-12-08. Retrieved 2023-06-09.
  32. ^ "Finland's first 5-qubit quantum computer is now operational". VTTresearch.com. 2022-12-08. Retrieved 2023-06-09.
  33. ^ "Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues". meetiqm.com. 2023-10-09.
  34. ^ "Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024". quantumzeitgeist.com. 2023-10-10.
  35. ^ Pelegrí, G.; Daley, A. J.; Pritchard, J. D. (2022). "High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage". Quantum Science and Technology. 7 (4): 045020. arXiv:2112.13025. Bibcode:2022QS&T....7d5020P. doi:10.1088/2058-9565/ac823a. S2CID 245502083.
  36. ^ "MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR" (PDF). M Squared. Retrieved 12 April 2023.
  37. ^ "Lucy". Oxford Quantum Circuits. 30 November 2021. Retrieved 20 Feb 2023.
  38. ^ "OQC Toshiko". Oxford Quantum Circuits. 24 November 2023. Retrieved 27 Nov 2023.
  39. ^ Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022-11-29). "High-fidelity generation of four-photon GHZ states on-chip". arXiv:2211.15626 [quant-ph].
  40. ^ "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)". Le Monde.fr. Le Monde. 22 November 2022.
  41. ^ "Spin-2". Quantum Inspire. Retrieved 5 May 2021.
  42. ^ "Six-qubit silicon quantum processor sets a record". PhysicsWorld. 19 October 2022. Retrieved 2023-07-09.
  43. ^ "Starmon-5". Quantum Inspire. Retrieved 4 May 2021.
  44. ^ "Quantinuum H2 Product Data Sheet" (PDF).
  45. ^ "Quantinuum's H-Series hits 56 physical qubits that are all-to-all connected, and departs the era of classical simulation". www.quantinuum.com. Retrieved 2024-06-06.
  46. ^ "System Model H2". www.quantinuum.com. Retrieved 2024-10-10.
  47. ^ a b "Quantinuum System Model H1 Product Data Sheet" (PDF). Quantinuum. Retrieved 8 Jul 2023.
  48. ^ "Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume". www.quantinuum.com. Retrieved 2024-04-17.
  49. ^ "Quantinuum Announces Quantum Volume 4096 Achievement". Quantinuum. Retrieved 24 Feb 2023.
  50. ^ "Soprano specs". Quantware. Retrieved 1 Feb 2023.
  51. ^ "Contralto specs". Quantware. Retrieved 21 Feb 2023.
  52. ^ "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". Quantware. Retrieved 21 Feb 2023.
  53. ^ "Tenor specs". Quantware. Retrieved 26 Feb 2023.
  54. ^ a b "QPU". Rigetti Computing. Archived from the original on 2019-05-16. Retrieved 2019-03-24.
  55. ^ "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. Retrieved 2018-03-21.
  56. ^ "Aspen-M-3 Quantum Processor". Retrieved 2023-02-20.
  57. ^ Rigetti & Company LLC (2024-01-04). "Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs". GlobeNewswire News Room (Press release). Retrieved 2024-01-23.
  58. ^ "Japan's first homemade quantum computer goes online". www.riken.jp. Retrieved 2024-01-25.
  59. ^ "Japanese joint research group launches quantum computing cloud service". Fujitsu Global. Retrieved 2024-01-25.
  60. ^ "RIKEN and Fujitsu develop 64-qubit quantum computer". www.riken.jp. Retrieved 2024-01-25.
  61. ^ "All tests passed: DLR QCI accepts 4-qubit demonstrator SQ-RT with Princess QPU from SaxonQ". Retrieved 16 Jul 2024.
  62. ^ "Triangulum3 qubits desktop NMR quantum computer". AQT. Retrieved 24 Feb 2023.
  63. ^ Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711.
  64. ^ Letzter, Rafi – Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world". livescience.com. Retrieved 2020-12-19.{{cite web}}: CS1 maint: numeric names: authors list (link)
  65. ^ Ball, Philip (2020-12-03). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters. 127 (18): 180501. arXiv:2106.14734. Bibcode:2021PhRvL.127r0501W. doi:10.1103/PhysRevLett.127.180501. PMID 34767433. S2CID 235658633.
  66. ^ Zhu, Qingling; et al. (2021). "Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling". Science Bulletin. 67 (3): 240–245. arXiv:2109.03494. doi:10.1016/j.scib.2021.10.017. PMID 36546072. S2CID 237442167.
  67. ^ Wu, Yulin; Bao, Wan-Su; Cao, Sirui; Chen, Fusheng; Chen, Ming-Cheng; Chen, Xiawei; Chung, Tung-Hsun; Deng, Hui; Du, Yajie; Fan, Daojin; Gong, Ming; Guo, Cheng; Guo, Chu; Guo, Shaojun; Han, Lianchen (2021-10-25). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters. 127 (18): 180501. arXiv:2106.14734. Bibcode:2021PhRvL.127r0501W. doi:10.1103/PhysRevLett.127.180501. ISSN 0031-9007. PMID 34767433. S2CID 235658633.
  68. ^ a b c Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard; Helt, Lukas G.; Collins, Matthew J.; Lita, Adriana E. (June 2022). "Quantum computational advantage with a programmable photonic processor". Nature. 606 (7912): 75–81. Bibcode:2022Natur.606...75M. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMC 9159949. PMID 35650354. S2CID 249276257.
  69. ^ a b c "A new kind of quantum". spie.org. Retrieved 2021-01-09.
  70. ^ a b "China launches 504-qubit quantum chip, open to global users". www.chinadaily.com.cn/.
  71. ^ "Digital Annealer – Quantum Computing Technology". Fujitsu. Retrieved 12 April 2023.
  72. ^ a b c d Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
  73. ^ Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].
  74. ^ a b c "D-Wave Announces 1,200+ Qubit Advantage2™ Prototype in New, Lower-Noise Fabrication Stack, Demonstrating 20x Faster Time-to-Solution on Important Class of Hard Optimization Problems".
  75. ^ a b c "D-Wave Announces Availability of 1,200+ Qubit Advantage2™ Prototype in the Leap™ Quantum Cloud Service, Making its Most Performant System Available to Customers Today".
  76. ^ a b "D-Wave Clarity Roadmap : 2023-2024" (PDF). dwavesys.com. November 18, 2024. Retrieved November 18, 2024. Advantage 2™ quantum system will incorporate a new qubit design that enables 20-way connectivity in a new topology. The Advantage 2 QPU will contain 7000+ qubits and make use of the latest improvements in quantum coherence in a multi-layer fabrication stack, further harnessing the quantum mechanical power of the system for finding better solutions, faster.
  77. ^ a b c McGeoch, Catherine; Farre, Pau; Boothby, Kelly (June 9, 2022). "The D-wave Advantage2 Prototype : Technical Report" (PDF). Dwavesys.com. Retrieved November 11, 2024.
  78. ^ a b "Ahead of the Game: D-Wave Delivers Prototype of Next-Generation Advantage2 Annealing Quantum Computer".
  79. ^ https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
  80. ^ Lee, Jane (2 November 2022). "Boston-based quantum computer QuEra joins Amazon's cloud for public access". Reuters.