Jump to content

Gian Francesco Giudice

From Wikipedia, the free encyclopedia
(Redirected from Gian Giudice)
Gian Francesco Giudice
Born (1961-01-25) January 25, 1961 (age 63)
NationalityItalian
Alma materUniversity of Padua
International School for Advanced Studies
Scientific career
FieldsPhysics
InstitutionsCERN
INFN
University of Texas at Austin
Fermilab
Doctoral advisorRiccardo Barbieri

Gian Francesco Giudice (born January 25, 1961) is an Italian theoretical physicist working at CERN in particle physics and cosmology.

Academic career

[edit]

After graduating in physics from the University of Padua in 1984, Giudice obtained in 1988 his PhD in theoretical physics from the International School for Advanced Studies in Trieste. Between 1988 and 1990 he was Research Associate at the Fermi National Accelerator Laboratory near Chicago. Between 1990 and 1992 he was Research Fellow in the Physics Department of the University of Texas at Austin, in the group led by Steven Weinberg. After being employed by the Istituto Nazionale di Fisica Nucleare of Italy, in 1993 he moved to CERN, where is currently the Head of the Theoretical Physics Department. Academician of the Accademia dei Lincei, the Istituto Veneto di Scienze, Lettere ed Arti, and Accademia Galileiana, he has been awarded the Jacques Solvay Chair in Physics at the Université libre de Bruxelles (2013), Distinguished Visiting Research Chair at Perimeter Institute for Theoretical Physics (2019), Sackler Distinguished Lecturer at Tel Aviv University (2020), Chandrasekhar Lecturer at Tata Institute of Fundamental Research (2022), Erwin-Schrödinger Professor at the University of Vienna (2023).

Research

[edit]

The research activity of Giudice mainly deals with the formulation of new theories that extend our present knowledge of the particle world toward smaller distances. He is also studying how these theories can be applied to cosmology in order to describe the early stages of the history of our universe. His most notable results are in the areas of supersymmetry, extra dimensions, electroweak physics, collider physics, dark matter, and leptogenesis. Together with physicist Riccardo Barbieri, he proposed[1] a widely used criterion to test the degree of naturalness of a supersymmetric theory that achieves electroweak symmetry breaking. He co-invented the Giudice-Masiero mechanism,[2] which is the leading explanation for the mu problem of supergravity. He has made fundamental contributions to the construction of Gauge Mediation,[3] and he is a co-author of the first papers proposing Anomaly Mediation[4] and Split Supersymmetry.[5] He is one of the proponents of a method[6] to compute quantum effects in theories with broken supersymmetry through analytic continuation into superspace. Well known and much used in LHC studies is his method[7] to describe graviton interactions in theories with extra spatial dimensions. He is also one of the originators of the idea of Minimal Flavor Violation,[8] a paradigm to characterize the effects of flavor transitions in new theories of particle physics. After the discovery of the Higgs boson, he computed the probability that the Higgs vacuum undergoes quantum tunnelling, finding the surprising result that the universe is in a critical state which will eventually end in a cosmic collapse.[9]

Support of particle accelerator projects

[edit]

Giudice has played an active role in studying the physics potential of particle accelerators, supporting and advocating several new projects at CERN and in other laboratories worldwide. He has been a member of the LHC Experiments Committee (the body that reviews the activity of the experimental groups at the LHC), the European Committee for Future Accelerators (the advisory body for long-range planning of high-energy facilities in Europe), the preparatory group for the 2020 European Strategy for Particle Physics, and numerous advisory and review committees of research institutes worldwide.

Science popularization

[edit]

Besides his research work, Giudice is active in popularization of science and outreach, often giving public lectures on particle physics and related topics, and participating in science festivals and other events. He is the author of A Zeptospace Odyssey,[10] a popular-science book on the physics of the LHC, which has been finalist for the 2012 Galileo Literary Prize for popular science and the Prize Pianeta Galileo 2013. The book, originally written in English, has been translated into Italian,[11] German,[12] French,[13] Spanish,[14] and Korean.[15]

References

[edit]
  1. ^ R. Barbieri; G. F. Giudice (1988). "Upper Bounds on Supersymmetric Particle Masses" (PDF). Nucl. Phys. B. 306 (1): 63–76. Bibcode:1988NuPhB.306...63B. doi:10.1016/0550-3213(88)90171-X.
  2. ^ G. F. Giudice; A. Masiero (1988). "A Natural Solution to the Mu Problem in Supergravity Theories". Phys. Lett. B. 206 (3): 480–484. Bibcode:1988PhLB..206..480G. doi:10.1016/0370-2693(88)91613-9.
  3. ^ G. F. Giudice; R. Rattazzi (1999). "Theories with gauge mediated supersymmetry breaking". Phys. Rep. 322 (6): 419–499. arXiv:hep-ph/9801271. Bibcode:1999PhR...322..419G. doi:10.1016/S0370-1573(99)00042-3. S2CID 118928206.
  4. ^ L. Randall; R. Sundrum (1999). "Out of this world supersymmetry breaking". Nucl. Phys. B. 557 (1–2): 79–118. arXiv:hep-th/9810155. Bibcode:1999NuPhB.557...79R. doi:10.1016/S0550-3213(99)00359-4. S2CID 1408101.
    G. F. Giudice; M. A. Luty; H. Murayama; R. Rattazzi (1998). "Gaugino mass without singlets". JHEP. 9812 (12): 027. arXiv:hep-ph/9810442. Bibcode:1998JHEP...12..027G. doi:10.1088/1126-6708/1998/12/027. S2CID 12517291.
  5. ^ N. Arkani-Hamed; S. Dimopoulos (2006). "Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC". JHEP. 0506 (6): 073. arXiv:hep-th/0405159. Bibcode:2005JHEP...06..073A. doi:10.1088/1126-6708/2005/06/073. S2CID 6658196.
    G. F. Giudice; A. Romanino (2004). "Split supersymmetry". Nucl. Phys. B. 699 (1): 65. arXiv:hep-ph/0406088. Bibcode:2005NuPhB.706..487G. doi:10.1016/j.nuclphysb.2004.11.048.
    N. Arkani-Hamed; S. Dimopoulos; G. F. Giudice; A. Romanino (2005). "Aspects of split supersymmetry". Nucl. Phys. B. 709 (1–2): 3–46. arXiv:hep-ph/0409232. Bibcode:2005NuPhB.709....3A. doi:10.1016/j.nuclphysb.2004.12.026. S2CID 16632949.
  6. ^ G. F. Giudice; R. Rattazzi (1998). "Extracting supersymmetry breaking effects from wave function renormalization". Nucl. Phys. B. 511 (1–2): 25–44. arXiv:hep-ph/9706540. Bibcode:1998NuPhB.511...25G. doi:10.1016/S0550-3213(97)00647-0. S2CID 5764178.
    N. Arkani-Hamed; G. F. Giudice; M. A. Luty; R. Rattazzi (1998). "Supersymmetry breaking loops from analytic continuation into superspace". Phys. Rev. D. 58 (11): 115005. arXiv:hep-ph/9803290. Bibcode:1998PhRvD..58k5005A. doi:10.1103/PhysRevD.58.115005. S2CID 13376937.
  7. ^ G. F. Giudice; R. Rattazzi; J. D. Wells (1999). "Quantum gravity and extra dimensions at high-energy colliders". Nucl. Phys. B. 544 (1–2): 3–38. arXiv:hep-ph/9811291. Bibcode:1999NuPhB.544....3G. doi:10.1016/S0550-3213(99)00044-9. S2CID 14407490.
  8. ^ G. D'Ambrosio; G. F. Giudice; G. Isidori; A. Strumia (2002). "Minimal flavor violation: an effective field theory approach". Nucl. Phys. B. 645 (1–2): 155–187. arXiv:hep-ph/9811291. Bibcode:2002NuPhB.645..155D. doi:10.1016/S0550-3213(02)00836-2. S2CID 2049412.
  9. ^ G. Degrassi; S. Di Vita; J. Elias-Miro; J. R. Espinosa; G. F. Giudice; G. Isidori; A. Strumia (2012). "Higgs mass and vacuum stability in the Standard Model at NNLO". JHEP. 1208 (8): 098. arXiv:1205.6497. Bibcode:2012JHEP...08..098D. doi:10.1007/JHEP08(2012)098. S2CID 53368704.
  10. ^ G. F. Giudice, A Zeptospace Odyssey: A Journey into the Physics of the LHC Archived 2013-11-01 at the Wayback Machine, Oxford University Press, Oxford 2010, ISBN 978-0-19-958191-7.
  11. ^ G. F. Giudice, Odissea nello zeptospazio: un viaggio nella fisica dell'LHC, Springer-Verlag Italia, Milano 2010, ISBN 978-88-470-1630-9.
  12. ^ G. F. Giudice, Odyssee im Zeptoraum: Eine Reise in die Physik des LHC, Springer-Verlag, Berlin Heidelberg 2012, ISBN 978-3-642-22394-5.
  13. ^ G. F. Giudice, L'Odyssée du Zeptoespace: Un voyage au cœur de la physique du LHC, Presses polytechniques et universitaires romandes, Lausanne 2013, ISBN 978-2-88-074998-9.
  14. ^ G. F. Giudice, Odisea en el zeptoespacio, Jot Down Books, Madrid 2013, ISBN 978-84-940939-1-3.
  15. ^ G. F. Giudice, 젭토스페이스 - 힉스 입자를 발견한 LHC 물리학의 세계, Humanist, Seoul 2017, ISBN 979-11-608-0004-3.
[edit]