Jump to content

File:Wave guiding.gif

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Wave_guiding.gif (300 × 300 pixels, file size: 5 MB, MIME type: image/gif, looped, 68 frames, 6.8 s)

Summary

Description
English: You can guide light with a waveguide. You can also couple the waveguide with a ring resonator, where the light will circulate. And if you attach a second waveguide to the ring resonator you can effectively move the light from one waveguide to the other.
Date
Source https://twitter.com/j_bertolotti/status/1448566344702730245
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 12.0 code

\[Lambda]0 = 1.; k0 =  N[(2 \[Pi])/\[Lambda]0]; (*The wavelength in vacuum is set to 1, so all lengths are now in units of wavelengths*)
\[Delta] = \[Lambda]0/20; \[CapitalDelta] = 50*\[Lambda]0; (*Parameters for the grid*) \[Sigma] = 10 \[Lambda]0; (*width of the gaussian beam*)
sourcef[x_, y_] :=E^(-((x + \[CapitalDelta]/8)^2 + (y + \[CapitalDelta]/3)^2)/(2 (\[Lambda]0/5)^2));
\[Phi]in = Table[Chop[sourcef[x, y]], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Discretized source*)
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)
imn = Table[
   Chop[5 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d))], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Imaginary part of the refractive index (used to emulate absorbing boundaries)*)
dim = Dimensions[\[Phi]in][[1]];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)
ReMapC[x_] := RGBColor[(2 x - 1) UnitStep[x - 0.5], 0, (1 - 2 x) UnitStep[0.5 - x]];

frames1 = Table[
  ren = Clip[
    Table[If[-\[Lambda]0 - \[CapitalDelta]/8 < x < \[Lambda]0 - \[CapitalDelta]/8, \[Alpha], 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}], {1, 2}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
  M = L + DiagonalMatrix[
     SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-
  hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
   MatrixPlot[Transpose[(Re[(\[Phi]in + \[Phi]s)]/Max[Abs@Re[\[Phi]in + \[Phi]s][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]])][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> ReMapC, DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}]
   ,
   ArrayPlot[Transpose[Re[(n - 1)/5]] [[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ]
  , {\[Alpha], 1, 2, 1/10}]

frames2 = 
 Table[ren = Clip[Table[If[-\[Lambda]0 - \[CapitalDelta]/8 < x < \[Lambda]0 - \[CapitalDelta]/8, 2, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}] + Table[If[\[CapitalDelta]/2 - 6*\[Lambda]0 < (x - \[CapitalDelta]/8 - \[Lambda]0/4 + \[CapitalDelta]/8 + (-(\[CapitalDelta]/1.7) (t - 1)^4))^2 + (y)^2 < \[CapitalDelta]/2 + 6*\[Lambda]0, 1, 0], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}], {1, 2}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
  M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
  ImageAdd[
   MatrixPlot[Transpose[(Re[(\[Phi]in + \[Phi]s)]/Max[Abs@Re[\[Phi]in + \[Phi]s][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]])][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> ReMapC, DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}]
   ,
   ArrayPlot[Transpose[Re[(n - 1)/5]] [[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ]
  , {t, 0, 1, 1/10}]

frames3 = 
 Table[ren = Clip[Table[If[-\[Lambda]0 - \[CapitalDelta]/8 < x < \[Lambda]0 - \[CapitalDelta]/8, 2, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}] + Table[If[\[CapitalDelta]/2 - 6*\[Lambda]0 < (x - \[CapitalDelta]/8 - \[Lambda]0/4 + \[CapitalDelta]/8)^2 + (y)^2 < \[CapitalDelta]/2 + 6*\[Lambda]0, 1, 0], {x, -\[CapitalDelta]/2, \[CapitalDelta]/       2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}] + Table[If[-\[Lambda]0 + \[CapitalDelta]/4 + \[Lambda]0/2 - \[CapitalDelta]/8 + (\[CapitalDelta]/1.7 (t - 1)^4) < x < \[Lambda]0 + \[CapitalDelta]/4 + \[Lambda]0/2 - \[CapitalDelta]/8 + (\[CapitalDelta]/1.7 (t - 1)^4), 1, 0], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}], {1, 2}];
  n = ren + I imn;
  b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
  M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
  \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
  ImageAdd[
   MatrixPlot[Transpose[(Re[(\[Phi]in + \[Phi]s)]/Max[Abs@Re[\[Phi]in + \[Phi]s][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]])][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> ReMapC, DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}]
   ,
   ArrayPlot[Transpose[Re[(n - 1)/5]] [[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
   ]
  , {t, 0, 1, 1/10}]

ListAnimate[Join[
  Table[frames1[[1]], {5}], frames1,
  Table[frames2[[1]], {5}], frames2,
  Table[frames3[[1]], {5}], frames3, Table[frames3[[-1]], {20}]
  ], ImageSize -> Medium]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Visualization of how light from a point source can be guided though several guides.

Items portrayed in this file

depicts

14 October 2021

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:42, 15 October 2021Thumbnail for version as of 14:42, 15 October 2021300 × 300 (5 MB)BertoUploaded own work with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata