DescriptionVisualization of errors-in-variables linear regression.png
English: Illustration of wikipedia:regression dilution (or attenuation bias) by a range of regression estimates in wikipedia:Errors-in-variables models. Two regression lines (red) bound the range of linear regression possibilities. The shallow slope is obtained when the independent variable (or predictor) is on the abscissa (x-axis). The steeper slope is obtained when the independent variable is on the ordinate (y-axis). By convention, with the independent variable on the x-axis, the shallower slope is obtained. Green reference lines are averages within arbitrary bins along each axis. Note that the steeper green and red regression estimates are more consistent with smaller errors in the y-axis variable.
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.