Jump to content

File:Valeriepieris circle azimuthal equidistant.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (1,024 × 1,024 pixels, file size: 1.21 MB, MIME type: image/png)

Summary

Description
English: Danny Quah's Valerispieris circle on a globe model, centred on Mong Khet, Myanmar, rendered in azimuthal equidistant projection from the equirectangular projection from http://commons.wikimedia.org/wiki/File:Earthmap1000x500.jpg by CMG Lee.
Date upload 25. Oct. 2005
Source
Earthmap1000x500.jpg
Author cmglee, jimht at shaw dot ca
Other versions
Valeriepieris circle azimuthal equal area.png
Mecca azimuthal equidistant.png
Cambridge azimuthal equidistant.png

Python source

#!/usr/bin/env python

import re, math, png

path_in          = 'mya/Earthmap1000x500.png'
path_out         = 'Valeriepieris_circle_azimuthal_equidistant.png'
colour_circle    = [255, 255, 0]
radius_circle    = 0.51
thickness_circle = 0.01
lat_centre       = 21.7
long_centre      = 99.383333
zoom             = 0.33
out_size         = 2048
out_size_half    = out_size * 0.5

class Png:
 def __init__(self, path_in):
  (self.width, self.height, self.pixels, self.metadata) = png.Reader(path_in).read_flat()
  self.planes = self.metadata['planes']
 def __str__(self): return str((self.width, self.height, len(self.pixels), self.metadata))
 def write(self, path_out):
  png.Writer(width=self.width, height=self.height,
             bitdepth=self.metadata['bitdepth'], interlace=self.metadata['interlace'],
             planes=self.metadata['planes'], greyscale=self.metadata['greyscale'],
             alpha=self.metadata['alpha']).write_array(open(path_out, 'wb'), self.pixels)

## Formulas from http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
def azimuthal_equidistant_to_equirectangular(x, y, lat1, long1):
 c        = math.hypot(x, y)
 if c == 0 or (abs(lat1) == 90 and y == 0): return (0, 0)
 sin_c    = math.sin(c)
 cos_c    = math.cos(c)
 lat1_rad = math.radians(lat1)
 sin_lat1 = math.sin(lat1_rad)
 cos_lat1 = math.cos(lat1_rad)
 to_asin  = cos_c * sin_lat1 + y * sin_c * cos_lat1 / c
 if abs(to_asin) > 1: return (0, 0)
 lat  =  math.degrees(math.asin(to_asin))
 long = (math.degrees(math.atan2(-x, y) if lat1 ==  90 else
                      math.atan2( x, y) if lat1 == -90 else
                      math.atan2(x * sin_c, c * cos_lat1 * cos_c - y * sin_lat1 * sin_c)) +
         long1 + 540) % 360 - 180 ## + 540 % 360 - 180 to make range [-180, 180)
 return (lat, long)

png_in  = Png(path_in)
print(png_in)
print(png_in.pixels[:20])
png_out = Png(path_in) ## copy most of original's metadata
png_out.width  = png_out.height = out_size
png_out.pixels = [0] * (png_out.width * png_out.height)
print(png_out)
for  out_y in range(out_size):
 for out_x in range(out_size):
  x = (out_x / out_size_half - 1) /  zoom
  y = (out_y / out_size_half - 1) / -zoom
  if abs(math.hypot(x,y) - radius_circle) < thickness_circle * zoom:
   colour = colour_circle
  else:
   (lat, long) = azimuthal_equidistant_to_equirectangular(x, y, lat_centre, long_centre)
   in_y = int(png_in.height * ( 90 - lat ) / 180.0)
   in_x = int(png_in.width  * (180 + long) / 360.0)
   in_offset = (in_y  * png_in.width + in_x ) * png_in .planes
   colour = png_in.pixels[in_offset :in_offset  + png_in.planes]
  out_offset = (out_y * out_size     + out_x) * png_out.planes
  png_out.pixels[out_offset:out_offset + png_out.planes] = colour
png_out.write(path_out)

Licensing

w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Danny Quah's Valerispieris circle on a globe model, centred on Mong Khet, Myanmar, rendered in azimuthal equidistant projection

Items portrayed in this file

depicts

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current01:02, 23 February 2022Thumbnail for version as of 01:02, 23 February 20221,024 × 1,024 (1.21 MB)CmgleeFix render
01:43, 22 January 2022Thumbnail for version as of 01:43, 22 January 20221,024 × 1,024 (95 KB)CmgleeUploaded a work by cmglee, jimht at shaw dot ca from {{source thumb|earthmap1000x500.jpg}} with UploadWizard

Global file usage

The following other wikis use this file:

Metadata