Jump to content

File:VFPt horseshoe-magnet.svg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (SVG file, nominally 600 × 600 pixels, file size: 40 KB)

Summary

Description
English: Drawing of a horseshoe magnet with precisely computed magnetic field lines. The horseshoe magnet is assumed as a curved cylindrical rod with constant magnetisation along the cylinder axis. North- and southpole of the magnet are marked in red and green, respectively. The shape of the magnetic field is computed as follows: H- and B-field are identical in free space, so we can choose the easier one, which is the H-field. The H-field has its sources and sinks where the lines of the magnetisation end and begin. Thus, the correct field is obtained by placing magnetic charges at the surfaces of the two magnetic poles. The field of a charge disc distribution is obtained by numerical integration. The shape of the field lines is traced with a Runge-Kutta algorithm. The density of field lines corresponds roughly to the field strength, however due to 3D variations of the field, this cannot exactly be fulfilled.
Note that in measured field distributions, e.g. using magnetised iron filings the field shape in the lower part of the image (where the magnet is bent) may somewhat differ. This is because the total field strength is very weak there. Therefore any inhomogeneity in the magnetisation can strongly alter the field direction.
Date
Source Own work
Author Geek3
SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with VectorFieldPlot.
 
This file uses embedded text.
This image has been assessed using the Quality image guidelines and is considered a Quality image.

العربية  جازايرية  беларуская  беларуская (тарашкевіца)  български  বাংলা  català  čeština  Cymraeg  Deutsch  Schweizer Hochdeutsch  Zazaki  Ελληνικά  English  Esperanto  español  eesti  euskara  فارسی  suomi  français  galego  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  italiano  日本語  Jawa  ქართული  한국어  kurdî  Lëtzebuergesch  lietuvių  македонски  മലയാളം  मराठी  Bahasa Melayu  Nederlands  Norfuk / Pitkern  polski  português  português do Brasil  rumantsch  română  русский  sicilianu  slovenčina  slovenščina  shqip  српски / srpski  svenska  தமிழ்  తెలుగు  ไทย  Tagalog  toki pona  Türkçe  українська  vèneto  Tiếng Việt  中文  中文(简体)  中文(繁體)  +/−

Source code
InfoField

Python code

# paste this code at the end of VectorFieldPlot 3.0
doc = FieldplotDocument('VFPt_horseshoe-magnet', commons=True,
    width=600, height=600)

x0, y0 = 0.0, -1.0
h = 2.0
R = 1.0
r = 0.3

# Note: The H-field of a magnet with constant profile and magnetization
# is exactly equal to the one created by magnetic surface charges
# at the ends of the magnet. In this case the ends are round discs.
field = Field([
    ['charged_disc', {'x0':x0-R-r, 'y0':y0+h, 'x1':x0-R+r, 'y1':y0+h, 'Q':-1}],
    ['charged_disc', {'x0':x0+R-r, 'y0':y0+h, 'x1':x0+R+r, 'y1':y0+h, 'Q':1}] ])

nlines = 24
def startp(t):
    return sc.array([x0 + R - R*cos(t*2*pi), y0 + h + R*sin(t*2*pi)])
startpoints = Startpath(field, startp).npoints(nlines)

for iline, p0 in enumerate(startpoints):
    line = FieldLine(field, p0, directions='both', maxr=1000)
    fe = {'start':True, 'leave_image':False, 'enter_image':False, 'end':True}
    if iline in [0, 1, 2, nlines-1, nlines-2, nlines-3]:
        fe['start'] = fe['end'] = False
    min_arrows = 1
    if iline == nlines - 7:
        min_arrows = 3
    doc.draw_line(line, arrows_style={
                  'dist':2.0, 'fixed_ends':fe, 'min_arrows':min_arrows})

# draw a horseshoe magnet with color gradients
g = doc.draw_object('g', {'id':'horseshoe',
    'transform':'translate({},{})'.format(x0, y0)})
defs = doc.draw_object('defs', {}, group=g)
grad_col = ['#000000', '#ffffff', '#ffffff', '#ffffff', '#000000']
grad_offs = sc.array([0, 0.07, 0.25, 0.6, 1])
grad_opa = sc.array([0.125, 0.125, 0.5, 0.2, 0.33])
grad1 = doc.draw_object('linearGradient', {'id':'grad1', 'x1':'0',
    'x2':'1', 'y1':'0', 'y2':'0', 'gradientUnits':'objectBoundingBox'},
    group=defs)
for col, of, opa in zip(grad_col, grad_offs, grad_opa):
    stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
        'stop-opacity':opa}, group=grad1)
grad2 = doc.draw_object('radialGradient', {'id':'grad2', 'r':str(R+r),
    'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
    'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in sorted(zip(grad_col, 1-grad_offs*2.*r/(R+r), grad_opa),
                           key=lambda x: x[1]):
    stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
        'stop-opacity':opa}, group=grad2)
grad3 = doc.draw_object('radialGradient', {'id':'grad3', 'r':str(R+r),
    'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
    'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in zip(grad_col, (R-r)/(R+r)+grad_offs*2.*r/(R+r), grad_opa):
    stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
        'stop-opacity':opa}, group=grad3)
grad4 = doc.draw_object('linearGradient', {'id':'grad4', 'x1':str(-R-r),
    'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
    group=defs)
for col, of, opa in [['#ffffff', '0', '1'], ['#ffffff', str(r/(R+r)), '1'],
        ['#ffffff', str(R/(R+r)), '0'], ['#ffffff', '1', '0']]:
    stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
        'stop-opacity':opa}, group=grad4)
mask4 = doc.draw_object('mask', {'id':'mask4', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
    'height':str(R+r), 'style':'fill:url(#grad4); stroke:none;'}, group=mask4)
grad5 = doc.draw_object('linearGradient', {'id':'grad5', 'x1':str(-R-r),
    'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
    group=defs)
for col, of, opa in [['#ffffff', '0', '0'], ['#ffffff', str(r/(R+r)), '0'],
        ['#ffffff', str(R/(R+r)), '1'], ['#ffffff', '1', '1']]:
    stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
        'stop-opacity':opa}, group=grad5)
mask5 = doc.draw_object('mask', {'id':'mask5', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
    'height':str(R+r), 'style':'fill:url(#grad5); stroke:none;'}, group=mask5)

d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
     'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
     -R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
     R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#ff0000; ' +
     'stroke:none;'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} ' +
     'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
     -R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, 0, -R+r, 0, -R-r,
    R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#00cc00;stroke:none;'},
    group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(-R-r, h,
     -R+r, h, -R+r, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
    group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(R-r, h,
     R+r, h, R+r, 0, R-r, 0, R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
    group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
     'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
    R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad2);stroke:none;',
    'mask':'url(#mask4)'}, group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
    'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
    R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad3);stroke:none;',
    'mask':'url(#mask5)'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
    'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
    -R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
    R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:none; ' +
     'stroke:#000000; stroke-width:0.04;'}, group=g)

text_N = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
    'transform':'translate({},{}) scale({},{})'.format(R, h-0.6, 0.04, -0.04),
    'style':'fill:#000000; stroke:none; ' +
    'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_N.text = 'N'
text_S = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
    'transform':'translate({},{}) scale({},{})'.format(-R, h-0.6, 0.04, -0.04),
    'style':'fill:#000000; stroke:none; ' +
    'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_S.text = 'S'

doc.write()

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

7 July 2018

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:03, 7 July 2018Thumbnail for version as of 18:03, 7 July 2018600 × 600 (40 KB)Geek3User created page with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata