File:VFPt horseshoe-magnet.svg
Original file (SVG file, nominally 600 × 600 pixels, file size: 40 KB)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionVFPt horseshoe-magnet.svg |
English: Drawing of a horseshoe magnet with precisely computed magnetic field lines. The horseshoe magnet is assumed as a curved cylindrical rod with constant magnetisation along the cylinder axis. North- and southpole of the magnet are marked in red and green, respectively. The shape of the magnetic field is computed as follows: H- and B-field are identical in free space, so we can choose the easier one, which is the H-field. The H-field has its sources and sinks where the lines of the magnetisation end and begin. Thus, the correct field is obtained by placing magnetic charges at the surfaces of the two magnetic poles. The field of a charge disc distribution is obtained by numerical integration. The shape of the field lines is traced with a Runge-Kutta algorithm. The density of field lines corresponds roughly to the field strength, however due to 3D variations of the field, this cannot exactly be fulfilled. Note that in measured field distributions, e.g. using magnetised iron filings the field shape in the lower part of the image (where the magnet is bent) may somewhat differ. This is because the total field strength is very weak there. Therefore any inhomogeneity in the magnetisation can strongly alter the field direction. |
||
Date | |||
Source | Own work | ||
Author | Geek3 | ||
SVG development InfoField | This plot was created with VectorFieldPlot.
| ||
Source code InfoField | Python code# paste this code at the end of VectorFieldPlot 3.0
doc = FieldplotDocument('VFPt_horseshoe-magnet', commons=True,
width=600, height=600)
x0, y0 = 0.0, -1.0
h = 2.0
R = 1.0
r = 0.3
# Note: The H-field of a magnet with constant profile and magnetization
# is exactly equal to the one created by magnetic surface charges
# at the ends of the magnet. In this case the ends are round discs.
field = Field([
['charged_disc', {'x0':x0-R-r, 'y0':y0+h, 'x1':x0-R+r, 'y1':y0+h, 'Q':-1}],
['charged_disc', {'x0':x0+R-r, 'y0':y0+h, 'x1':x0+R+r, 'y1':y0+h, 'Q':1}] ])
nlines = 24
def startp(t):
return sc.array([x0 + R - R*cos(t*2*pi), y0 + h + R*sin(t*2*pi)])
startpoints = Startpath(field, startp).npoints(nlines)
for iline, p0 in enumerate(startpoints):
line = FieldLine(field, p0, directions='both', maxr=1000)
fe = {'start':True, 'leave_image':False, 'enter_image':False, 'end':True}
if iline in [0, 1, 2, nlines-1, nlines-2, nlines-3]:
fe['start'] = fe['end'] = False
min_arrows = 1
if iline == nlines - 7:
min_arrows = 3
doc.draw_line(line, arrows_style={
'dist':2.0, 'fixed_ends':fe, 'min_arrows':min_arrows})
# draw a horseshoe magnet with color gradients
g = doc.draw_object('g', {'id':'horseshoe',
'transform':'translate({},{})'.format(x0, y0)})
defs = doc.draw_object('defs', {}, group=g)
grad_col = ['#000000', '#ffffff', '#ffffff', '#ffffff', '#000000']
grad_offs = sc.array([0, 0.07, 0.25, 0.6, 1])
grad_opa = sc.array([0.125, 0.125, 0.5, 0.2, 0.33])
grad1 = doc.draw_object('linearGradient', {'id':'grad1', 'x1':'0',
'x2':'1', 'y1':'0', 'y2':'0', 'gradientUnits':'objectBoundingBox'},
group=defs)
for col, of, opa in zip(grad_col, grad_offs, grad_opa):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad1)
grad2 = doc.draw_object('radialGradient', {'id':'grad2', 'r':str(R+r),
'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in sorted(zip(grad_col, 1-grad_offs*2.*r/(R+r), grad_opa),
key=lambda x: x[1]):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad2)
grad3 = doc.draw_object('radialGradient', {'id':'grad3', 'r':str(R+r),
'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in zip(grad_col, (R-r)/(R+r)+grad_offs*2.*r/(R+r), grad_opa):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad3)
grad4 = doc.draw_object('linearGradient', {'id':'grad4', 'x1':str(-R-r),
'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
group=defs)
for col, of, opa in [['#ffffff', '0', '1'], ['#ffffff', str(r/(R+r)), '1'],
['#ffffff', str(R/(R+r)), '0'], ['#ffffff', '1', '0']]:
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad4)
mask4 = doc.draw_object('mask', {'id':'mask4', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
'height':str(R+r), 'style':'fill:url(#grad4); stroke:none;'}, group=mask4)
grad5 = doc.draw_object('linearGradient', {'id':'grad5', 'x1':str(-R-r),
'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
group=defs)
for col, of, opa in [['#ffffff', '0', '0'], ['#ffffff', str(r/(R+r)), '0'],
['#ffffff', str(R/(R+r)), '1'], ['#ffffff', '1', '1']]:
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad5)
mask5 = doc.draw_object('mask', {'id':'mask5', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
'height':str(R+r), 'style':'fill:url(#grad5); stroke:none;'}, group=mask5)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#ff0000; ' +
'stroke:none;'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, 0, -R+r, 0, -R-r,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#00cc00;stroke:none;'},
group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(R-r, h,
R+r, h, R+r, 0, R-r, 0, R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad2);stroke:none;',
'mask':'url(#mask4)'}, group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad3);stroke:none;',
'mask':'url(#mask5)'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:none; ' +
'stroke:#000000; stroke-width:0.04;'}, group=g)
text_N = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
'transform':'translate({},{}) scale({},{})'.format(R, h-0.6, 0.04, -0.04),
'style':'fill:#000000; stroke:none; ' +
'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_N.text = 'N'
text_S = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
'transform':'translate({},{}) scale({},{})'.format(-R, h-0.6, 0.04, -0.04),
'style':'fill:#000000; stroke:none; ' +
'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_S.text = 'S'
doc.write()
|
Licensing
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Items portrayed in this file
depicts
7 July 2018
image/svg+xml
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 18:03, 7 July 2018 | 600 × 600 (40 KB) | Geek3 | User created page with UploadWizard |
File usage
The following page uses this file:
Global file usage
The following other wikis use this file:
- Usage on bn.wikibooks.org
- Usage on de.wikipedia.org
- Usage on en.wikibooks.org
- Usage on hi.wikipedia.org
- Usage on pl.wikipedia.org
- Usage on ru.wikipedia.org
- Usage on shn.wikibooks.org
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Short title | VFPt_horseshoe-magnet |
---|---|
Image title | VFPt_horseshoe-magnet
created with VectorFieldPlot 1.7 https://commons.wikimedia.org/wiki/User:Geek3/VectorFieldPlot about: https://commons.wikimedia.org/wiki/File:VFPt_horseshoe-magnet.svg rights: Creative Commons Attribution ShareAlike 4.0 |
Width | 600 |
Height | 600 |