Jump to content

File:Sundial solstice declination lines for different latitudes - slow.gif

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Sundial_solstice_declination_lines_for_different_latitudes_-_slow.gif (400 × 400 pixels, file size: 553 KB, MIME type: image/gif, looped, 50 frames, 50 s)

Summary

Description
English: Gnomon height is 1, its base point is denoted by g. The tip of the gnomon during a day casts a shadow along a declination line. Here the declination line at winter solstice is in blue, and the declination at summer solstice is in red, while the declination line at equinox is in magenta. North is up. Eccentricity of the declination line is denoted by e. Latitude of the point on the Earth where the gnomon is located is denoted by lat. The origin of corresponding horizontal sundial is denoted by h.Two small black dots are foci of declination lines. To obtain the equation for declination lines I used the approach attributed to Apollonius of Perga: the double cone formed by lines from the tip of the gnomon to positions of the Sun at each day of the year, is cut by the plane of the ground. For hyperbolas I verified the equation using a formula from this book. Using this approach, for eccentricity we get a very simple formula: e=cos(latitude)/sin(Sun's declination).So, on the equator eccentricity of solstice lines is the highest, approx. 2.52.
Русский: Высота гномона — 1, его основание обозначено g. Верхушка гномона в течение дня отбрасывает тень вдоль особой кривой, являющейся коническим сечением. Эта кривая для дня зимнего солнцестояния — синяя, для летнего — красная. Эксцентриситет их обозначен e. В день равноденствия это — линия, показанная фиолетовым. Широта точки на земной поверхности, где установлен гномон — lat. Начальная точка соответствующих горизонтальных солнечных часов — h. Две маленькие черные точки — фокусы конического сечения. При выводе уравнения кривой использован подход, приписываемый Аполлонию Пергскому. В частности, в результате получается очень простая формула для эксцентриситета:e=cos(широта)/sin(склонение Солнца). Поэтому максимальный эксцентриситет кривых для солнцестояний — на экваторе, примерно равен 2,52.
Date
Source Own work
Author Cmapm

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

3 October 2012

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:17, 3 October 2012Thumbnail for version as of 16:17, 3 October 2012400 × 400 (553 KB)CmapmUser created page with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file: