File:Schwarzschild-Droste-Space-Time-Vectors-Of-Outgoing-Null-Congruences.png
Original file (3,720 × 3,720 pixels, file size: 472 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Contents
Summary
DescriptionSchwarzschild-Droste-Space-Time-Vectors-Of-Outgoing-Null-Congruences.png |
Deutsch: Vektorplot der Schwarzschild Raumzeit in Schwarzschild Droste Koordinaten. Ausgehende Photonen (v=+c). x=r, y=t |
Date | |
Source | Own work → Link |
Author | Yukterez (Simon Tyran, Vienna) |
Other versions |
Licensing
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Photon Worldlines (v=±1, E=√[1-2/r₀])
Free Falling Worldlines (v=±√[2/r], E=1)
Accelerated Worldlines (v=±2/r, E=1/√[1+2/r])
Stream Plots (v=±1 & v=-√[2/r])
-
D1) SD, ingoing lightlike vectors
-
D2) SD, outgoing lightlike vectors
-
D3) EF, ingoing timelike vectors
Curves of constant bookkeeper time (t=constant)
Local Observers
In Gullstrand Painlevé coordinates the local observers (or clocks and rulers) who define the direction of the space and time axes are free falling raindrops with the negative escape velocity (relative to local observers stationary with respect to the black hole), while in Eddington Finkelstein coordinates they are accelerating to the squared raindrop velocity , which they achieve by a proper acceleration of radially outwards, so de facto a deceleration. In the classic Schwarzschild Droste coordinates the local clocks and rulers are stationary with respect to the black hole, so they also experience a proper outward acceleration of , which is infinite at .
In SD and GP coordinates, ingoing and outgoing worldlines at terminate with infinite coordinate velocity (therefore around they are depicted as horizontal worldlines on the spacetime diagrams), while in EF coordinates they arrive with , which holds for timelike and lightlike geodesics (they all have at on the diagrams). The local velocity of photons relative to other local infalling test particles and the singularity is though all the way, while the velocity of timelike test particles goes to relative to the singularity.
Equations
A1
With the Schwarzschild Droste line element
we get for lightlike radial paths
therefore the time by radius is
A2
With the Gullstrand Painlevé line element
we get for lightlike radial paths
therefore the time by radius is
for ingoing, and for outgoing rays
A3
With the Eddington Finkelstein line element
we get for lightlike radial paths
therefore the time by radius is
for ingoing, and for outgoing rays
B1
For the escape velocity we set and for photons , then solve for .
In Droste coordinates we get
for the free falling worldlines with the positive and negative escape velocities.
The local velocity relative to the stationary observers is
so the time by radius is
B2
In Raindrop coordinates we get
which gives us
B3
In ingoing Eddington Finkelstein coordinates we get
therefore the time by radius is
for ingoing geodesics, and for outgoing ones
C1
With the Schwarzschild Droste line element we get for the local velocity of :
C2
With the Gullstrand Painlevé line element we get
C3
With the Eddington Finkelstein line element
we get for the local velocity of :
D1
The vectors of the ingoing null conguences in Schwarzschild Droste coordinates are
D2
The vectors of the outgoing null conguences in Schwarzschild Droste coordinates are
D3
The vectors of free falling worldlines with the negative and positive escape velocity in Eddington Finkelstein coordinates are
E1
Here we simply have .
E2
For the Schwarzschild Droste timelines in Raindrop coordinates we have
E3
In Eddington Finkelstein coordinates the Schwarzschild Droste bookkeeper timelines are given by
Units
Natural units of are used. Code and other coordinates: Source
Items portrayed in this file
depicts
29 November 2022
image/png
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 12:11, 29 November 2022 | 3,720 × 3,720 (472 KB) | Yukterez | those were the timelike, now uploading the lightlike congruences | |
12:02, 29 November 2022 | 3,720 × 3,720 (425 KB) | Yukterez | Uploaded own work with UploadWizard |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Software used |
---|