Jump to content

File:RiemannCriticalLine.svg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (SVG file, nominally 933 × 434 pixels, file size: 50 KB)

 
W3C-validity not checked.

Summary

Description
English: Graph of real (red) and imaginary (blue) parts of the critical line Re(z)=1/2 of the Riemann zeta function.
Date
Source

Own work. Made with Mathematica using the following code:

Show[Plot[{Re[Zeta[1/2+I x]], Im[Zeta[1/2+I x]]}, {x,-30, 30},AxesLabel->{"x"} , PlotStyle->{Red, Blue}, Ticks->{Table[4x-28,{x,0,14}]}, ImageSize->{800,600}], Graphics[Text[Style[\[DoubleStruckCapitalR][\[Zeta][ I x + "1/2"]],14,Red ,Background ->White],{-22,2.6} ]], Graphics[Text[Style[\[GothicCapitalI][\[Zeta][ I x + "1/2"]],14,Blue ,Background ->White],{-14,2.6} ]]]
Author Slonzor
Permission
(Reusing this file)
Public Domain
SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with Matplotlib by Krishnavedala.
Source code
InfoField

Python code

Source code
import mpmath
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['svg.fonttype'] = 'path'

x = np.linspace(-30, 30, 300)
y = [complex(1,1)]*len(x)
for p, xx in enumerate(x):
    t = mpmath.nstr(mpmath.mpc(0.5 + xx*1j))
    y[p] = mpmath.zeta(t)

fig = plt.figure(figsize=[13,6])
ax = fig.add_subplot(111)

ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['left'].set_smart_bounds(True)
ax.spines['bottom'].set_smart_bounds(True)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

ax.text(-25,2.7, '$\\Re\\left[\\zeta\\left(\\frac{1}{2}+ix\\right)\\right]$', size='xx-large', color='red')
ax.text(-15,2.7, '$\\Im\\left[\\zeta\\left(\\frac{1}{2}+ix\\right)\\right]$', size='xx-large', color='blue')

ax.plot(x, [yy.real for yy in y], label='Real', color='red')
ax.plot(x, [yy.imag for yy in y], label='Imag', color='blue')
# ax.legend(loc=(.6,.8))
ax.minorticks_on()
ax.grid(b=True, which='major', ls='-', lw=1.5)
ax.grid(b=True, which='minor', ls='--', lw=.5)
fig.savefig('RiemannCriticalLine.svg', bbox_inches='tight')

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

20 November 2008

image/svg+xml

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:01, 23 August 2017Thumbnail for version as of 20:01, 23 August 2017933 × 434 (50 KB)Krishnavedalamuch reduced vector version
22:28, 24 September 2009Thumbnail for version as of 22:28, 24 September 2009800 × 600 (122 KB)Geek3linewidth=1px
19:33, 20 November 2008Thumbnail for version as of 19:33, 20 November 2008800 × 600 (122 KB)SlonzorMan i've messed this up a lot of times.
19:27, 20 November 2008Thumbnail for version as of 19:27, 20 November 2008800 × 600 (3.36 MB)Slonzor
19:23, 20 November 2008Thumbnail for version as of 19:23, 20 November 2008800 × 600 (3.36 MB)Slonzor
19:18, 20 November 2008Thumbnail for version as of 19:18, 20 November 2008800 × 600 (3.36 MB)Slonzor
19:13, 20 November 2008Thumbnail for version as of 19:13, 20 November 2008800 × 600 (79 KB)Slonzor{{Information |Description={{en|1=Graph of real (red) and imaginary (blue) parts of the critical line Re(z)=1/2 of the Riemann zeta function.}} |Source=Own work. Made with Mathematica using the following code: <code><nowiki>Show[Plot[{Re[Zeta[1/2+I x]],

Global file usage

The following other wikis use this file:

View more global usage of this file.

Metadata