Jump to content

File:QHO-coherentstate3-animation-color.gif

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

QHO-coherentstate3-animation-color.gif (300 × 200 pixels, file size: 449 KB, MIME type: image/gif, looped, 150 frames, 7.5 s)

Summary

Description
English: Animation of the quantum wave function of a coherent state of initial α=3 in a Quantum harmonic oscillator. The probability distribution is drawn along the ordinate, while the phase is encoded by color. The gaussian wave packet oscillates sinusoidally in the harmonic potential.
Date
Source Own work
 
This plot was created with Matplotlib.
Author Geek3
Other versions QHO-coherentstate3-animation.gif

Source Code

The plot was generated with Matplotlib.


Python Matplotlib source code
#!/usr/bin/python
# -*- coding: utf8 -*-

from math import *
import matplotlib.pyplot as plt
from matplotlib import animation, colors, colorbar
import numpy as np
import colorsys
from scipy.interpolate import interp1d
import os, sys

plt.rc('path', snap=False)
plt.rc('mathtext', default='regular')

# image settings
fname = 'QHO-coherentstate3-animation-color'
width, height = 300, 200
ml, mr, mt, mb, mh, mc = 35, 19, 22, 45, 12, 6
x0, x1 = -7, 7
y0, y1 = 0.0, 0.7
nframes = 150
fps = 20

# physics settings
alpha0 = 3.0
omega = 2*pi

def color(phase):
    hue = (phase / (2*pi) + 2./3.) % 1
    light = interp1d([0, 1, 2, 3, 4, 5, 6], # adjust lightness
                     [0.64, 0.5, 0.55, 0.48, 0.70, 0.57, 0.64])(6 * hue)
    hls = (hue, light, 1.0) # maximum saturation
    rgb = colorsys.hls_to_rgb(*hls)
    return rgb

def coherent(alpha0, x, omega_t):
    # Definition of coherent states
    # https://en.wikipedia.org/wiki/Coherent_states
    alpha = alpha0 * e**(-1j * omega_t)
    psi = pi**-0.25 * np.exp(-0.5j * omega_t
                - 0.5 * ((x - sqrt(2) * alpha.real))**2
                - 1j * alpha.imag * (alpha.real - sqrt(2) * x))
    return psi

def animate(nframe):
    print str(nframe) + ' ',; sys.stdout.flush()
    t = float(nframe) / nframes # animation repeats after t=1.0
    
    ax.cla()
    ax.grid(True)
    ax.axis((x0, x1, y0, y1))

    x = np.linspace(x0, x1, int(ceil(1+w_px)))
    x2 = x - px_w/2.
    
    # Let's cheat a bit: add a phase phi(t)*const(x)
    # This will reduce the period from T=2*(2pi/omega) to T=1.0*(2pi/omega)
    # and allow fewer frames and less file size for repetition.
    # For big alpha the change is hardly visible
    psi = coherent(alpha0, x, omega * t) * np.exp(-0.5j * omega * t)
    psi2 = coherent(alpha0, x2, omega * t) * np.exp(-0.5j * omega * t)
    
    y = np.abs(psi)**2
    phi = np.angle(psi2)
    
    # plot color filling
    for x_, phi_, y_ in zip(x, phi, y):
        ax.plot([x_, x_], [0, y_], color=color(phi_), lw=2*0.72)
    
    ax.plot(x, y, lw=2, color='black')
    ax.set_yticklabels([l for l in ax.get_yticks() if l < y0+0.9*(y1-y0)])
    

# create figure and axes
plt.close('all')
fig, ax = plt.subplots(1, figsize=(width/100., height/100.))
bounds = [float(ml)/width, float(mb)/height,
          1.0 - float(mr+mc+mh)/width, 1.0 - float(mt)/height]
fig.subplots_adjust(left=bounds[0], bottom=bounds[1],
                    right=bounds[2], top=bounds[3], hspace=0)
w_px = width - (ml+mr+mh+mc) # plot width in pixels
px_w = float(x1 - x0) / w_px # width of one pixel in plot units

# axes labels
fig.text(0.5 + 0.5 * float(ml-mh-mc-mr)/width, 4./height,
         r'$x\ \ [(\hbar/(m\omega))^{1/2}]$', ha='center')
fig.text(5./width, 1.0, '$|\psi|^2$', va='top')

# colorbar for phase
cax = fig.add_axes([1.0 - float(mr+mc)/width, float(mb)/height,
                    float(mc)/width, 1.0 - float(mb+mt)/height])
cax.yaxis.set_tick_params(length=2)
cmap = colors.ListedColormap([color(phase) for phase in
                              np.linspace(0, 2*pi, 384, endpoint=False)])
norm = colors.Normalize(0, 2*pi)
cbar = colorbar.ColorbarBase(cax, cmap=cmap, norm=norm,
                    orientation='vertical', ticks=np.linspace(0, 2*pi, 3))
cax.set_yticklabels(['$0$', r'$\pi$', r'$2\pi$'], rotation=90)
fig.text(1.0 - 10./width, 1.0, '$arg(\psi)$', ha='right', va='top')
plt.sca(ax)

# start animation
if 0 != os.system('convert -version > ' +  os.devnull):
    print 'imagemagick not installed!'
    # warning: imagemagick produces somewhat jagged and therefore large gifs
    anim = animation.FuncAnimation(fig, animate, frames=nframes)
    anim.save(fname + '.gif', writer='imagemagick', fps=fps)
else:
    # unfortunately the matplotlib imagemagick backend does not support
    # options which are necessary to generate high quality output without
    # framewise color palettes. Therefore save all frames and convert then.
    if not os.path.isdir(fname):
        os.mkdir(fname)
    fnames = []
    
    for frame in range(nframes):
        animate(frame)
        imgname = os.path.join(fname, fname + '{:03d}'.format(frame) + '.png')
        fig.savefig(imgname)
        fnames.append(imgname)
    
    # compile optimized animation with ImageMagick
    cmd = 'convert -loop 0 -delay ' + str(100 / fps) + ' '
    cmd += ' '.join(fnames) # now create optimized palette from all frames
    cmd += r' \( -clone 0--1 \( -clone 0--1 -fill black -colorize 100% \) '
    cmd += '-append +dither -colors 255 -unique-colors '
    cmd += '-write mpr:colormap +delete \) +dither -map mpr:colormap '
    cmd += '-alpha activate -layers OptimizeTransparency '
    cmd += fname + '.gif'
    os.system(cmd)
    
    for fnamei in fnames:
        os.remove(fnamei)
    os.rmdir(fname)

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may select the license of your choice.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

20 September 2015

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current21:42, 10 October 2015Thumbnail for version as of 21:42, 10 October 2015300 × 200 (449 KB)Geek3better compression
13:26, 4 October 2015Thumbnail for version as of 13:26, 4 October 2015300 × 200 (603 KB)Geek3legend added
22:04, 20 September 2015Thumbnail for version as of 22:04, 20 September 2015300 × 200 (608 KB)Geek3{{Information |Description ={{en|1=Animation of the quantum wave function of a Schrödinger cat state of α=3 in a Quantum harmonic oscillator. The [[:en:Probability distrib...

The following page uses this file:

Global file usage

The following other wikis use this file: