importmatplotlib.pyplotaspltimportnumpyasnpfromsklearn.datasetsimportmake_classificationfromsklearn.linear_modelimportLogisticRegressionfromsklearn.metricsimportprecision_recall_curve,f1_score# Generate synthetic data with make_classificationX,y_true=make_classification(n_samples=1000,n_features=20,random_state=42)# Create a Logistic Regression modelmodel=LogisticRegression()# Fit the model on the datamodel.fit(X,y_true)# Predict probabilities for the positive classy_scores=model.predict_proba(X)[:,1]# Compute precision, recall, and F-scoreprecision,recall,thresholds=precision_recall_curve(y_true,y_scores)f_scores=2*(precision*recall)/(precision+recall)# Find the threshold with the maximal F-scoremax_f_score_idx=np.argmax(f_scores)max_f_score_threshold=thresholds[max_f_score_idx]# Create the PR curve plotplt.figure(figsize=(8,6))plt.scatter(recall[:-1],precision[:-1],c=thresholds)plt.scatter(recall[max_f_score_idx],precision[max_f_score_idx],c='red',marker='o',label=f'Max F-score ({max_f_score_threshold:.2f})',s=100)plt.colorbar()plt.xlabel('Recall')plt.ylabel('Precision')plt.title('Precision-Recall Curve')plt.legend()plt.grid(True)plt.show()
Summary
DescriptionPR curve with optimal fscore.png
English: Precision Recall Curve, points from different thresholds are color coded, the point with optimal fscore is highlighted in red
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.