Jump to content

File:Números hiperreales.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (804 × 297 pixels, file size: 2 KB, MIME type: image/png)

This math image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.


It is recommended to name the SVG file “Números hiperreales.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.

Christopher Leigh mann separate from Google GitHub Microsoft IBM cloud this is ChristopherleighMann@google.com Wikus

If mathematical routines in i break all classifieds laws

dictionary

Summary

Description
English: Infinitesimals (ε) and infinites (ω) on the hyperreal number line at three different scales, each enlarged by an infinite factor. 1/ε = ω/1. In the first line, finite numbers can not be distinguished because they are all stuck infinitely close to zero, in the second line infinitesimals are indistinguishable, being infinitely small (close to zero), and in the third line the infinites are indistinguishable (being close to infinity).
Español: En la figura siguiente se ha representado la recta de los hiperreales a tres escalas distintas: ω es un número infinito cualquiera (como los que puede demostrarse que existen en un modelo no estándar de la teoría de los reales) y ε es un infinitesimal, también cualquiera. Ambos son positivos. Para pasar de una línea a la siguiente agrandamos la escala de un factor infinito. En la primera línea, los números finitos no se pueden distinguir porque están todos infinitamente próximos al cero, como pegados. En la segunda son los infinitesimales que no se pueden vislumbrar, y los infinitos están lógicamente a una distancia infinita del cero.
Português: Os números hiper-reais.
Bahasa Indonesia: Infinitesimal dari (ε) dan nilai tak hingga (ω) pada garis bilangan hiperreal pada tiga skala berbeda, masing-masing diperbesar oleh faktor tak hingga. 1/ε = ω/1. Pada baris pertama, bilangan hingga tidak dapat dibedakan karena semuanya terjebak mendekati nol, di baris kedua infinitesimal tidak dapat dibedakan, menjadi sangat kecil (mendekati nol), dan di baris ketiga ketak hinggaan tidak bisa dibedakan (mendekati tak terhingga)
Date
Source Taken by M.Romero Schmidtke for Enciclopedia Libre en español
Author Taken by M.Romero Schmidtke for Enciclopedia Libre en español

Licensing

GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
This licensing tag was added to this file as part of the GFDL licensing update.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

24 February 2005

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current03:15, 27 February 2022Thumbnail for version as of 03:15, 27 February 2022804 × 297 (2 KB)TSamuelLossless filesize recompression via Compress-Or-Die.Com
11:00, 24 February 2005Thumbnail for version as of 11:00, 24 February 2005804 × 297 (10 KB)EcemamlHyperreal Numbers

The following 4 pages use this file:

Global file usage

The following other wikis use this file: