Jump to content

File:Mplwp universe scale evolution.svg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (SVG file, nominally 600 × 450 pixels, file size: 57 KB)

Summary

Description
English: Plot of the evolution of the size of the universe (scale parameter a) over time (in billion years, Gyr). Different models are shown, which are all solutions to the Friedmann equations with different parameters. The evolution is governed by the equation
.

Here is the radiation density, the matter density, the curvature parameter and the dark energy, all normalized such that represents the fact that today's expansion rate is .
Plotted parameter sets:

  • De Sitter universe: Only dark energy:
  • Lambda-CDM model: The model that fits the observations best: ,
  • An empty universe (no relevant contributions of matter, radiation, dark energy) with negative curvature:
  • Einstein–de_Sitter universe: A flat universe dominated by cold matter:
  • A closed Friedmann model: ,
Date
Source Own work
Author Geek3
SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with mplwp, the Matplotlib extension for Wikipedia plots.
Source code
InfoField

Python code

#!/usr/bin/python
# -*- coding: utf8 -*-

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from math import *

code_website = 'http://commons.wikimedia.org/wiki/User:Geek3/mplwp'
try:
    import mplwp
except ImportError, er:
    print 'ImportError:', er
    print 'You need to download mplwp.py from', code_website
    exit(1)

name = 'mplwp_universe_scale_evolution.svg'
fig = mplwp.fig_standard(mpl)
fig.set_size_inches(600 / 72.0, 450 / 72.0)
mplwp.set_bordersize(fig, 58.5, 16.5, 16.5, 44.5)
xlim = -17, 22; fig.gca().set_xlim(xlim)
ylim = 0, 3; fig.gca().set_ylim(ylim)
mplwp.mark_axeszero(fig.gca(), y0=1)

import scipy.optimize as op
from scipy.integrate import odeint

tH = 978. / 68. # Hubble time in Gyr

def Hubble(a, matter, rad, k, darkE):
    # the Friedman equation gives the relative expansion rate
    a = a[0]
    if a <= 0: return 0.
    r = rad / a**4 + matter / a**3 + k / a**2 + darkE
    if r < 0: return 0.
    return sqrt(r) / tH

def scale(t, matter, rad, k, darkE):
    return odeint(lambda a, t: a*Hubble(a, matter, rad, k, darkE), 1., [0, t])

def scaled_closed_matteronly(t, m):
    # analytic solution for matter m > 1, rad=0, darkE=0
    t0 = acos(2./m-1) * 0.5 * m / (m-1)**1.5 - 1. / (m-1)
    try: psi = op.brentq(lambda p: (p - sin(p))*m/2./(m-1)**1.5
                                   - t/tH - t0, 0, 2 * pi)
    except Exception: psi=0
    a = (1.0 - cos(psi)) * m * 0.5 / (m-1.)
    return a

# De Sitter http://en.wikipedia.org/wiki/De_Sitter_universe
matter=0; rad=0; k=0; darkE=1
t = np.linspace(xlim[0], xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, zorder=-2,
         label=ur'$\Omega_\Lambda=1$,               de Sitter')

# Standard Lambda-CDM https://en.wikipedia.org/wiki/Lambda-CDM_model
matter=0.3; rad=0.; k=0; darkE=0.7
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, zorder=-1,
    label=ur'$\Omega_m=0.\!3,\Omega_\Lambda=0.\!7$, $\Lambda$CDM')

# Empty universe
matter=0; rad=0; k=1; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_k=1$,    empty universe', zorder=-3)

'''
# Open Friedmann
matter=0.5; rad=0.; k=0.5; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=0.\!5, \Omega_k=0.5$')
'''

# Einstein de Sitter http://en.wikipedia.org/wiki/Einstein–de_Sitter_universe
matter=1.; rad=0.; k=0; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=1$, Einstein de Sitter', zorder=-4)

'''
# Radiation dominated
matter=0; rad=1.; k=0; darkE=0
t0 = op.brentq(lambda t: scale(t, matter, rad, k, darkE)[1,0], -20, 0)
t = np.linspace(t0, xlim[-1], 5001)
a = [scale(tt, matter, rad, k, darkE)[1,0] for tt in t]
plt.plot(t, a, label=ur'$\Omega_r=1$')
'''

# Closed Friedmann
matter=6; rad=0.; k=-5; darkE=0
t0 = op.brentq(lambda t: scaled_closed_matteronly(t, matter)-1e-9, -20, 0)
t1 = op.brentq(lambda t: scaled_closed_matteronly(t, matter)-1e-9, 0, 20)
t = np.linspace(t0, t1, 5001)
a = [scaled_closed_matteronly(tt, matter) for tt in t]
plt.plot(t, a, label=ur'$\Omega_m=6, \Omega_k=\u22125$,    closed', zorder=-5)

plt.xlabel('t [Gyr]')
plt.ylabel(ur'$a/a_0$')
plt.legend(loc='upper left', borderaxespad=0.6, handletextpad=0.5)
plt.savefig(name)
mplwp.postprocess(name)

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

17 April 2017

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current00:12, 17 April 2017Thumbnail for version as of 00:12, 17 April 2017600 × 450 (57 KB)Geek3validator fix
22:33, 16 April 2017Thumbnail for version as of 22:33, 16 April 2017600 × 450 (57 KB)Geek3{{Information |Description ={{en|1=Plot of the evolution of the size of the universe (scale parameter ''a'') over time (in billion years, Gyr). Different models are shown, which are all solutions to the {{W|Friedmann equations|Friedmann equations}}...

The following 2 pages use this file:

Global file usage

The following other wikis use this file:

Metadata