Jump to content

File:Liquid Crystal based Spatial Light Modulator.gif

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Liquid_Crystal_based_Spatial_Light_Modulator.gif (360 × 263 pixels, file size: 947 KB, MIME type: image/gif, looped, 80 frames)

Summary

Description
English: As (nematic) liquid crystals are birifrangent and their orientation can be changed applying an electric field, it is possible to change the refractive index seen by an incident wave applying a voltage to a liquid crystal cell and thus control the phase retardation of the reflected wave.
Date
Source https://twitter.com/j_bertolotti/status/1144556106192183296
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 11.0 code

k1 = 2;
k2 = 4;
p1 = Table[
   Show[
    Graphics[{Polygon[{{-4.2, -6}, {-4, -6}, {-4, 6}, {-4.2, 6}}], Gray, Polygon[{{4.2, -6}, {4, -6}, {4, 6}, {4.2, 6}}], Black, Thick, Line[{{-4.1, -4}, {-5, -4}, {-5, -7}, {-3, -7}}], Disk[{-3, -7}, 0.2], Disk[{-1, -7}, 0.2], Line[{{-1, -7}, {0, -7}}], Line[{{0.5, -7}, {5, -7}, {5, -4}, {4.2, -4}}], Line[{{-3, -7}, {-3 + 2/Sqrt[2], -7 - 2/Sqrt[2]}}], Thickness[0.01], Line[{{0, -7.5}, {0, -6.5}}], 
      Line[{{0.5, -8}, {0.5, -6}}], Table[Rotate[Disk[{x, y}, {0.1, 0.4}], 0], {x, -3, 3, 1}, {y, -5, 5, 1}], Red, Arrow[{{12, 4}, {8, 4}}], Blue, Arrow[{{8, 0}, {12, 0}}]  }],
    Plot[Sin[k1 x] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Red, Thick}], Plot[Sin[k2 x + 4 (k1 - k2)] + 2, {x, -4, 4}, Axes -> False, PlotRange -> All, PlotStyle -> {Red, Thick}]
    ,
    Plot[-Sin[32 - 4 k1 + \[Pi] + k2 (4 + x)] + 2, {x, -4, 4}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Thick}],
    Plot[-Sin[32 - 4 k1 + \[Pi] + 4 k2 + k1 x + 4 (k2 - k1)] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Thick}]
    ]
   , {\[Phi], 2 \[Pi], 0, -0.4}];
k1 = 2;
k2 = 4;
k2old = 4;
knew = 2.5;
p2 = Table[
   k2 = \[Phi]/(2 \[Pi]) knew + (1 - \[Phi]/(2 \[Pi])) k2old; 
   Show[
    Graphics[{Polygon[{{-4.2, -6}, {-4, -6}, {-4, 6}, {-4.2, 6}}], Gray, Polygon[{{4.2, -6}, {4, -6}, {4, 6}, {4.2, 6}}], Black, Thick, Line[{{-4.1, -4}, {-5, -4}, {-5, -7}, {-3, -7}}], Disk[{-3, -7}, 0.2], Disk[{-1, -7}, 0.2], Line[{{-1, -7}, {0, -7}}], Line[{{0.5, -7}, {5, -7}, {5, -4}, {4.2, -4}}], Line[{{-3, -7}, {-1, -7}}], Thickness[0.01], Line[{{0, -7.5}, {0, -6.5}}], Line[{{0.5, -8}, {0.5, -6}}]
      , Table[Rotate[Disk[{x, y}, {0.1, 0.4}], \[Phi]/4], {x, -3, 3, 1}, {y, -5, 5, 1}], Red, Arrow[{{12, 4}, {8, 4}}], Blue, Arrow[{{8, 0}, {12, 0}}] }],
    Plot[Sin[k1 x] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Red, Thick}], Plot[Sin[k2 x + 4 (k1 - k2)] + 2, {x, -4, 4}, Axes -> False, PlotRange -> All, PlotStyle -> {Red, Thick}]
    ,
    Plot[-Sin[32 - 4 k1 + \[Pi] + k2 (4 + x)] + 2, {x, -4, 4}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Thick}],
    Plot[-Sin[32 - 4 k1 + \[Pi] + 4 k2 + k1 x + 4 (k2 - k1)] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Thick}]
    ,
    Plot[-Sin[32 - 4 k1 + \[Pi] + 4 k2old + k1 x + 4 (k2old - k1)] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Dashed}]
    ]
   , {\[Phi], 0, 2 \[Pi], 0.2}];
k1 = 2;
k2 = 4;
k2old = 4;
knew = 2.5;
p3 = Table[
   k2 = \[Phi]/(2 \[Pi]) knew + (1 - \[Phi]/(2 \[Pi])) k2old; 
   Show[
    Graphics[{Polygon[{{-4.2, -6}, {-4, -6}, {-4, 6}, {-4.2, 6}}], Gray, Polygon[{{4.2, -6}, {4, -6}, {4, 6}, {4.2, 6}}], Black, Thick, Line[{{-4.1, -4}, {-5, -4}, {-5, -7}, {-3, -7}}], Disk[{-3, -7}, 0.2], Disk[{-1, -7}, 0.2], Line[{{-1, -7}, {0, -7}}], Line[{{0.5, -7}, {5, -7}, {5, -4}, {4.2, -4}}], Line[{{-3, -7}, {-3 + 2/Sqrt[2], -7 - 2/Sqrt[2]}}], Thickness[0.01], Line[{{0, -7.5}, {0, -6.5}}], 
      Line[{{0.5, -8}, {0.5, -6}}], Table[Rotate[Disk[{x, y}, {0.1, 0.4}], \[Phi]/4], {x, -3, 3, 1}, {y, -5, 5, 1}], Red, Arrow[{{12, 4}, {8, 4}}], Blue, Arrow[{{8, 0}, {12, 0}}] }],
    Plot[Sin[k1 x] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Red, Thick}], Plot[Sin[k2 x + 4 (k1 - k2)] + 2, {x, -4, 4}, Axes -> False, PlotRange -> All, PlotStyle -> {Red, Thick}]
    ,
    Plot[-Sin[32 - 4 k1 + \[Pi] + k2 (4 + x)] + 2, {x, -4, 4}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Thick}]
    ,
    Plot[-Sin[32 - 4 k1 + \[Pi] + 4 k2 + k1 x + 4 (k2 - k1)] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Thick}]
    ,
    Plot[-Sin[32 - 4 k1 + \[Pi] + 4 k2old + k1 x + 4 (k2old - k1)] + 2, {x, 4.2, 15}, Axes -> False, PlotRange -> All, PlotStyle -> {Blue, Dashed}]
    ]
   , {\[Phi], 2 \[Pi], 0, -0.2}];
ListAnimate[Join[p1, p2, p3]]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Schematic working of a LCOS SLM

28 June 2019

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current13:00, 28 June 2019Thumbnail for version as of 13:00, 28 June 2019360 × 263 (947 KB)BertoUser created page with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata