English: Steps of the local oxidation process in noncontact mode. I: The tip is scanning the sample in noncontact mode oscillating at a constant amplitude. II:When the voltage pulse is applied a liquid meniscus between tip and sample is induced by the electrical field. This liquid meniscus acts like a nanometer-size electrochemical cell where an oxidation reaction is held. III:When the voltage pulse is off, the AFM feedbacks withdraw the tip from the sample stretching the liquid meniscus. IV: After the meniscus is broken the tip recovers its original oscillation amplitude and continues the scanning.
I, the copyright holder of this work, hereby publish it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
{{Information |Description={{en|1=Steps of the local oxidation process in noncontact mode. I: The tip is scanning the sample in noncontact mode oscillating at a constant amplitude. II:When the voltage pulse is appli