Jump to content

File:Interference of water waves with bottom topography, relevant for microseism generation.gif

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (1,000 × 334 pixels, file size: 532 KB, MIME type: image/gif, looped, 36 frames)

Summary

Description
English: This is an animation of the moving sea surface of 12 s waves in 100 m water depth propagating over a fixed bottom with a depth equal to 100 m plus some oscillation of amplitude 20 m.
Date
Source

using matlab

Previously published: none
Author Ardhuin

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
You may select the license of your choice.

Source code (MATLAB)

% Here is my matlab source code ... 
% this scripts computes the wave elevation and bottom pressure for a
% shoaling wave train, and estimates the k=0 spectral density 
% which comes into the primary microseisms signal. 

%clear; close all;
addpath /export/home/ardhuin/TOOLS/MATLAB
nx=2586;
dx1=65.757904031020715;

nz2=2268;
X2=linspace(0,nz2-1,nz2)*dx1./10;

nT=20
fall=linspace(0.005,0.1,nT);
   
wnum(1)=dispNewtonTH(fall(17),100);
   
Z2=100+20.*cos(wnum(1)*1.05.*X2);
for it=17:17 %1:nT
% Parameters for wind wave
   a1=1;surfig=0;gam=0.5;gi=9.81;f=fall(it);imu=sqrt(-1);h1=4800;h2=0.001;om=2*pi*f;
 %  a1=1;surfig=0;gam=0.5;gi=9.81;f=fall(it);imu=sqrt(-1);h1=2400;h2=0.001;om=2*pi*f;
%   a1=1;surfig=1;gam=0.5;gi=9.81;f=fall(it);imu=sqrt(-1);h1=3000;h2=0.001;om=2*pi*f;

   nn=64;
   Nx=21000*nn;
   x=linspace(X2(1),X2(end),Nx);
   ZZ=interp1(X2,Z2,x)';
   dx=x(2)-x(1);
   L=dx*Nx;

   a=zeros(Nx,1);
   iz2=find(ZZ < h2);
   iz1=find(ZZ > h1);
   h3=100;
   ZZ(iz1)=h1;
   if(length(iz2) > 0) 
   ZZ(iz2(1):end)=h2;
   end

   %ZZs = smoothn(ZZ,1E16);
   %I=find(x >2E5 & x < 3.15E5);
   %ZZ(I)=ZZs(I);

   ZZ(iz2)=h2;
   Hp=0.01;

   % solves dispersion relation for estimating Airy wave solutions
   wnum=zeros(Nx,1);
   kx=zeros(Nx,1);
   wnum(1)=dispNewtonTH(f,ZZ(1));a(1)=a1;
   C=om/wnum(1);kh=wnum(1)*ZZ(1);pp=0.5*(1+(2*kh)/sinh(2*kh));Cginf=pp*C;
   kinf=wnum(1);
   for i=2:Nx
      wnum(i)=dispNewtonTH(f,ZZ(i));
      if i==2
          kx(i)=kx(i-1)+wnum(i)*dx;
      else
          kx(i)=kx(i-1)+0.5*(wnum(i)+wnum(i-1))*dx;
      end
      if (mod(kx(i),80) < mod(kx(i-1),80)) 
          %[i kx(i)]
          %kx(i) = kx(i)+0.2*(rand-0.5);
      end
      %kh=wnum(i)*ZZ(i);
      %pp=0.5*(1+(2*kh)/sinh(2*kh));
      %Cg=pp*om/wnum(i);
      %%[ZZ(i) Cg pp]
      %dkm=0.05*(om/Cg)*cos(kx(i)/(3*pi^2));
      %kx(i)=kx(i)+dkm*dx;
      %%[wnum(i) dkm cos(kx(i)/pi^2)]
%%% THE AMPLITUDE IS CALCULATED from   
%%% conservation of action: d/dx(Cg*E/sigma)=0--> Cg*A^2=const over the x-axis
%%% 
      C=om/wnum(i);kh=wnum(i)*ZZ(i);pp=0.5*(1+(2*kh)/sinh(2*kh));Cg=pp*C;
%
% limitation by breaking for wind waves ... 
      a(i)=a1.*min(sqrt(Cginf/Cg),ZZ(i)*gam);
   end
   Ldeep=2*pi/wnum(1);

%% This is for IG waves: constant amplitude in surf zone
   indsurf=find (a > a1.*ZZ*gam*0.99);
   if (surfig == 1 & length(indsurf) > 0)
      a(indsurf)=a(indsurf(1));
   end

inddry=find(ZZ < 0.0015);
a(inddry)=0.;

%kx=kx-kx(iz2); %-om/(sqrt(gi*Hp)).*2.*sqrt(abs(h2/Hp));
z=a.*(cos(kx));
zquad=a.*(sin(kx));

nphase=120;
Kphase=zeros(nphase,1);
Kqphase=zeros(nphase,1);

pb=a.*(cos(kx))./cosh(wnum.*ZZ);
pbquad=a.*(sin(kx))./cosh(wnum.*ZZ);

%%% Creates an animation of the surface elevation and bottom pressure
nfft=Nx;

figure(10)
fig=figure('Position',[1 1 600 200])
set(fig,'Color',[ 1 1 1]);
nt=36;
prefix='bottom2';
for ii=1:nt
    ii
    clf
    phi=(ii-1)*2*pi/nt;
    zphi=z.*cos(phi)+zquad.*sin(phi);
    pphi=pb.*cos(phi)+pbquad.*sin(phi);
   hold on
    plot(x./1000,-ZZ./60-2.,'k-','LineWidth',1);
    plot(x./1000,zphi./4,'b-','LineWidth',2);
    plot(x./1000,pphi.*4-1.5,'r-','LineWidth',2);
   hold off

 xlabel('x (km)')
 ht=text(0.5,0.8,'sea surface elevation / 4 (m)','Fontsize',16,'Color',[0 0 1])

ht=text(0.5,-2.9,'bottom pressure \times 4 - 1.5 (m)','Fontsize',16,'Color',[1 0 0])
ht=text(10,-2.9,'depth/60 -2 (m)','Fontsize',16,'Color',[0 0 0])
   number=sprintf('%.4d',ii);
   oname=[prefix '_' number '.png' ];
   set(gcf, 'PaperPositionMode', 'auto')
   set(gca,'Xlim',[0 15],'Ylim',[-4 0.9])
   set(gca,'position',[0.05 0.2 0.92 0.74])
   saveas(gcf, oname, 'png')

end

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

1 May 2014

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current08:30, 1 May 2014Thumbnail for version as of 08:30, 1 May 20141,000 × 334 (532 KB)ArdhuinUploading a self-made file using File Upload Wizard

The following page uses this file:

Global file usage

The following other wikis use this file: