Jump to content

File:Feigenbaum Julia set.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (2,000 × 2,000 pixels, file size: 784 KB, MIME type: image/png)

Summary

Description
English: Feigenbaum Julia set. . Parameter c is the aproximation of the Myrberg-Feigenbaum point = the Feigenbaum Point, which is the limit of the period doubling bifurcations cascade and landing point of parameter rays with irrational angles
Date
Source Own work
Author Soul windsurfer

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

C src code

#include <complex.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <omp.h> //OpenM

/*
fork of 
mandelbrot-book how to write a book about the Mandelbrot set by Claude Heiland-Alle
https://code.mathr.co.uk/mandelbrot-book/blob/HEAD:/book/

https://stackoverflow.com/questions/77135883/why-do-my-functions-not-work-in-parallel


gcc c.c -lm -Wall -fopenmp

./a.out >ed.ppm   // P6 = binary Portable PixMap see https://en.wikipedia.org/wiki/Netpbm#File_formats

convert ed.ppm -resize 25% ed.png
*/





const double pi = 3.141592653589793;
int q = 2 ; // degree of multibrot set

complex double f(complex double z, complex double c){ return z*z + c;} // multibrot z^q + c
complex double d(complex double z) {return 2*z; } // q*z^{q-1}  derivative




double cnorm(double _Complex z) // https://stackoverflow.com/questions/6363247/what-is-a-complex-data-type-and-an-imaginary-data-type-in-c
{
  return creal(z) * creal(z) + cimag(z) * cimag(z);
}

void hsv2rgb(double h, double s, double v, int *red, int *grn, int *blu) {
  double i, f, p, q, t, r, g, b;
  int ii;
  if (s == 0.0) { r = g = b = v; } else {
    h = 6 * (h - floor(h));
    ii = i = floor(h);
    f = h - i;
    p = v * (1 - s);
    q = v * (1 - (s * f));
    t = v * (1 - (s * (1 - f)));
    switch(ii) {
      case 0: r = v; g = t; b = p; break;
      case 1: r = q; g = v; b = p; break;
      case 2: r = p; g = v; b = t; break;
      case 3: r = p; g = q; b = v; break;
      case 4: r = t; g = p; b = v; break;
      default:r = v; g = p; b = q; break;
    }
  }
  *red = fmin(fmax(255 * r + 0.5, 0), 255);
  *grn = fmin(fmax(255 * g + 0.5, 0), 255);
  *blu = fmin(fmax(255 * b + 0.5, 0), 255);
}

int main()
{
  // integer size of the image 
  const int w = 8000 ;
  const int h = 8000 ;
  
  const int n = 1024;
  
  const double r = 2.0; // plane radius
  const double px = r / (h/2);
  const double r2 = 25 * 25; // escape radius (ER) = r so r2 = ER*ER
  unsigned char *img = malloc(3 * w * h);
  
  double _Complex c = -1.4011551890;

  #pragma omp parallel for schedule(dynamic)
  for (int j = 0; j < h; ++j)
  {
    
        
    double y = (h/2 - (j + 0.5)) / (h/2) * r;
    for (int i = 0; i < w; ++i)
    {
      double x =  (i + 0.5 - w/2) / (h/2) * r; // for q=2 add -0.5
      double _Complex z = x + I * y;
      double _Complex dz = 1.0; // first derivative of zn with respect to z
      
      
      int k;
      for (k = 0; k < n; ++k)
      { 
        // 
        dz = d(z)*dz ;
        z = f(z,c);
        
        if (cnorm(z) > r2)
          break;
      }
      
      // color
      double hue = 0, sat = 0, val = 1; // interior color = white
      
      if (k < n) 
      { // exterior and boundary color
        double _Complex de = 2 * z * log(cabs(z)) / dz;
        hue = fmod(1 + carg(de) / (2 * pi), 1); // ? slope of de
        sat = 0.25;
        val = tanh(cabs(de) / px );
      }
      
      // hsv to rgb conversion
      int red, grn, blu;
      hsv2rgb(hue, sat, val, &red, &grn, &blu);
      // save rgb color to array
      img[3*(j * w + i)+0] = red;
      img[3*(j * w + i)+1] = grn;
      img[3*(j * w + i)+2] = blu;
    }
  }
  
  //
  printf("P6\n%d %d\n255\n", w, h);
  fwrite(img, 3 * w * h, 1, stdout);
  free(img);
  
  
  return 0;
}

bash source code

gcc c.c -lm -Wall -fopenmp

./a.out >ed.ppm  

convert ed.ppm -resize 25% ed.png

rm ed.ppm


make

all: 
	chmod +x c.sh
	./c.sh


Tu run the program simply

 make

Captions

Feigenbaum Julia set. f(z) = z^2 -1.4011551890

Items portrayed in this file

depicts

19 October 2023

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:25, 19 October 2023Thumbnail for version as of 18:25, 19 October 20232,000 × 2,000 (784 KB)Soul windsurferUploaded own work with UploadWizard

The following 2 pages use this file:

Global file usage

Metadata