Jump to content

File:Ensemble quantum 1DOF canonical.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (900 × 900 pixels, file size: 78 KB, MIME type: image/png)

Summary

Description
English: Ensemble canonically distributed over energy, for a quantum system consisting of one particle in a potential well.
Date
Source Own work
Author Nanite

Source

 
This plot was created with Matplotlib.

Python source code. Requires matplotlib.

from pylab import *

figformat = '.png'
saveopts = {'dpi':300} #, 'bbox_inches':'tight', 'transparent':True, 'frameon':True}
seterr(divide='ignore')

# Very important number, smaller means more classical (finer-spaced discrete levels, larger means more quantum (fewer discrete levels)
hbar = 0.7/(2*pi)

temp_canonical = 4.1
energy_microcanonical = -2.0
range_microcanonical = 1.0
micro_e0 = energy_microcanonical - 0.5*range_microcanonical
micro_e1 = energy_microcanonical + 0.5*range_microcanonical
def potential(x):
    return x**6 + 4*x**3 - 5*x**2 - 4*x
x = linspace(-2.5,2.5,1001)
dx = x[1] - x[0]
U = potential(x)
mass = 1.0

# compute pixel edges, used for pcolormesh.
xcorners = zeros(len(x)+1)
xcorners[:len(x)] = x-0.5*dx
xcorners[-1] = x[-1] + 0.5*dx

# make an energy range, for plots vs energy.
E = linspace(-20,20,10001)

#define color map that is transparent for low values, and dark blue for high values.
# weighted to show low probabilities well
cdic = {'red':   [(0,0,0),(1,0,0)],
        'green': [(0,0,0),(1,0,0)],
        'blue':  [(0,0.7,0.7),(1,0.7,0.7)],
        'alpha': [(0,0,0),
                  (0.1,0.4,0.4),
                  (0.2,0.6,0.6),
                  (0.4,0.8,0.8),
                  (0.6,0.9,0.9),
                  (1,1,1)]}
cm_prob = matplotlib.colors.LinearSegmentedColormap('prob',cdic)

# To get eigenvalues, we need to set up a NxN matrix for the
# Schrodinger equation Hamiltonian. For the momentum operator
# (-hbar^2/(2*m) * d^2/dx^2) the typical central difference
# approximation will be used.
H = zeros((len(x),len(x)))
# set diagonal
H.ravel()[0::len(x)+1] = hbar*hbar/(mass*dx*dx)
H.ravel()[0::len(x)+1] += U
# set above and below diagonal
H.ravel()[1::len(x)+1] = -0.5*hbar*hbar/(mass*dx*dx)
H.ravel()[len(x)::len(x)+1] = -0.5*hbar*hbar/(mass*dx*dx)

# Right, the hamiltonian is set up, so let's just go ahead and
# diagonalize it, poink.
eigval, eigvec = eigh(H)

def doev(H, Emax):
    lowE_idx = find(eigval<Emax)
    figure()
    for i in lowE_idx:
        plot(x,eigvec[:,i], label='E = '+str(eigval[i]))
    legend(fontsize=8)

micro = ((eigval > micro_e0)*(eigval < micro_e1))*1.0
print "microcanonical (E0 =",energy_microcanonical,", Delta =",0.5*range_microcanonical,") avg energy",
print sum(eigval*micro)/sum(micro)

canonical = exp(-eigval/temp_canonical)
canonical_avgE = sum(eigval*canonical)/sum(canonical)
print "canonical (T =",temp_canonical,") avg energy",
print canonical_avgE

# Boring level plot
fig = figure()
ax = axes()
plot(x,potential(x), linewidth=3)
for i in find(eigval<=13):
    axhline(eigval[i], color=(0.5,0.5,0.5),linewidth=0.5,zorder=-1)
ylim(-8,9)
xlim(-2.1,1.7)
fig.get_axes()[0].xaxis.set_ticks([-2,-1,0,1])
xlabel("position $x$")
ylabel("potential $U(x)$")
fig.set_size_inches(3,3)
fig.patch.set_alpha(0)
savefig("quant_potential_eigval_lines"+figformat, **saveopts)

def levelplot(weights):
    """
    Plot the potential with eigenstates' wavefunctions superimposed (shown).
      weights: list fractions to multiply each eigenstate probability
               (e.g., weight 0: do not show. weight 1: fully show)
      name: filename to save to
    """

    fig = figure()
    ax = axes([0.08,0.1,0.73,0.89]) #([0.125,0.1,0.71,0.8])
    plot(x,potential(x), linewidth=2, color='r', zorder=-1)
    maxp = dx*3.5*amax(weights)
    eigwidth = 0.2
    for i in find(eigval<=9):
        # Here, we plot the eigenfunctions as horizontal bars of varying darkness,
        # with height set by the energy eigenvalue.
        if weights[i] == 0: continue # don't plot levels with zero weight
        pdist = eigvec[:,i]**2 * weights[i]
        pdist.shape = (1,len(x))
        extent = (amin(x)-0.5*dx, amax(x)+0.5*dx, eigval[i]-0.5*eigwidth, eigval[i]+0.5*eigwidth)
        img = imshow(vstack((pdist,pdist)), cmap=cm_prob, extent=extent, interpolation='none', aspect='auto')
#        Alternate code using pcolormesh doesn't work because of ugly edges.
#        ycorners = vstack([
#            [eigval[i]-0.5*eigwidth]*(len(x)+1),
#            [eigval[i]+0.5*eigwidth]*(len(x)+1) ])
#        pcolormesh(vstack([xcorners,xcorners]), ycorners, pdist, cmap=cm_prob)
        clim(0,maxp)

    ylim(-9,9)
    xlim(-2.1,1.7)
    fig.get_axes()[0].xaxis.set_ticks([-2,-1,0,1])
    ax.xaxis.set_ticklabels([])
    ax.yaxis.set_ticklabels([])
    ax.xaxis.labelpad = 2
    ax.yaxis.labelpad = -3
    xlabel("position $x$")
    ylabel("energy")

    ax = axes([0.83,0.1,0.14,0.89], axisbg=(0.95,0.95,0.95))
    ax.xaxis.set_ticks([])
    ax.yaxis.set_ticklabels([])
    ax.yaxis.set_ticks_position('right')
    ylim(-9,9)
    xlabel("states")
    dos = E*0.0
    for i,Elevel in enumerate(eigval):
        # Here we sum up the density of states function
        if Elevel > 20: continue # don't waste time with high levels
        dos += exp(-4*((E-Elevel)/eigwidth)**2) * weights[i]
    fill_betweenx(E, dos, linewidth=0, color=(0.2,0.2,0.76))
    xlim(-0.05*max(dos),max(dos)*1.1)

    fig.set_size_inches(3,3)
    fig.patch.set_alpha(0)

levelplot(ones(len(eigval)))
savefig("quant_potential_eigval_pdists"+figformat, **saveopts)

levelplot(micro)
sca(gcf().axes[0])
axhspan(micro_e0, micro_e1, color=(0.7,1,0.7),zorder=-2)
sca(gcf().axes[1])
axhspan(micro_e0, micro_e1, color=(0.7,1,0.7),zorder=-2)
savefig("quant_potential_eigval_pdists_micro"+figformat, **saveopts)

levelplot(canonical)
sca(gcf().axes[0])
annotate("$\\langle E\\rangle$", (-0.5,canonical_avgE),
    textcoords=None,verticalalignment='top',color=(0,0.4,0))
axhline(canonical_avgE, linestyle='dotted', linewidth=1,color=(0,0.4,0))
annotate('',(1.2,7.-temp_canonical),(1.2,7.),
    arrowprops = {'arrowstyle':'<->'})
text(1.15,7.-0.5*temp_canonical,'$kT$',
    horizontalalignment='right',verticalalignment='center')
sca(gcf().axes[1])
axhline(canonical_avgE, linestyle='dotted', linewidth=1,color=(0,0.4,0))
fill_betweenx(E, exp(-E/temp_canonical), linewidth=0, color=(0.7,1,0.7),zorder=-2) # green exponential
savefig("quant_potential_eigval_pdists_canonical"+figformat, **saveopts)

# Position expectation values 
figure()
pdist = zeros(len(x))
for i,p in enumerate(micro): pdist += p*eigvec[:,i]**2
if any(micro):
    plot(x, pdist/sum(micro)/dx, label='microcanonical')
pdist = zeros(len(x))
for i,p in enumerate(canonical): pdist += p*eigvec[:,i]**2
plot(x, pdist/sum(canonical)/dx, label='canonical', color='g')
xlim(-2.1,1.7)
fig.get_axes()[0].xaxis.set_ticks([-2,-1,0,1])
xlabel("position $x$")
ylabel("PDF of position $P(x)$")
legend()
savefig("quant_position_pdf"+figformat, **saveopts)

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

30 October 2013

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current21:51, 30 October 2013Thumbnail for version as of 21:51, 30 October 2013900 × 900 (78 KB)NaniteUser created page with UploadWizard

The following 2 pages use this file:

Global file usage

The following other wikis use this file:

Metadata