Jump to content

File:Cubic set z^3+A*z+c with two cycles of length 3 and 105.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (2,000 × 2,000 pixels, file size: 558 KB, MIME type: image/png)

Summary

Description
English: Cubic Julia set z^3+A*z+c with two cycles of length 3 ( gray) and 105 ( black). c=(-5947392-3850240*i) * 2^-25 A=(-17343094-31007487*i) * 2^-25. Location by Marc Meidlinger: "Almost failed" [1]
Date
Source Own work
Author Adam majewski

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Algorithm

Here are 3 Fatou components. Each component has its own test ( and radius : ER, AR3, AR105)


unsigned char ComputeColor_Fatou (complex double z, int IterMax)
{

  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {
      z = f(z);
      if (IsEscaping(z)) // escaping = exterior
	{
	  uExterior += 1;
	  return iColorOfExterior;
	}			 

	
	if (IsAttracting3(z)) // 
	{
	  uInterior3 += 1;
	  return iColorOfInterior3;
	}			 


	if (IsAttracting105(z)) //
	{
	  uInterior105 += 1;
	  return iColorOfInterior105;
	}			 
    }

  //
  uUnknown += 1;
  return iColorOfUnknown;
}

cycles

coefficients read from input file almost_failed.txt
	degree 3 coefficient = ( 1.000000 +0.000000*i) 
	degree 1 coefficient = ( -17343094 -31007487*i) / 2^25
	degree 0 coefficient = ( -5947392 -3850240*i) / 2^25

Input polynomial p(z)=(1+0i)*z^3+(-0.51686447858810424805-0.9240951240062713623i)*z^1+(-0.17724609375-0.11474609375i)

2 critical points found

	cp#0: -0.51245892538596249377,-0.30054282669590931532 . It's critical orbit is bounded and enters cycle #0 length=105 and it's stability = |multiplier|=0.28704 =attractive 
cycle = {
-0.24732793789495804981,0.29215263953094150473 ; 0.26876710406969839262,-0.0085171236418623563758 ; -0.3046767904944813754,-0.36055537020136457782 ; -0.26241535545808958307,0.29962592335603582816 ; 0.28787510018461370809,0.0078838929604866936351 ; -0.29494991315089091888,-0.38288540074102683786 ; -0.27455873309559225559,0.31191915190416169557 ; 0.31234799441805982667,0.017944373517944256502 ; -0.2919340307234095655,-0.40741391215611333365 ; -0.28235422026374618065,0.3290654079280695421 ; 0.34199350012506646301,0.019164449919817083678 ; -0.29667802201690768316,-0.43396868516467318466 ; -0.28342600463717920745,0.35085345796581834943 ; 0.37536866371159016698,0.0071858850187334066817 ; -0.31178847180608326717,-0.46229943654508381945 ; -0.27370494394472238975,0.37630203167158604582 ; 0.40772920474884866149,-0.025028103409567903359 ; -0.34409922814958437964,-0.49105709722591744937 ; -0.2449944738941836897,0.40102658228395615669 ; 0.42346616544766646495,-0.087906711439687451604 ; -0.41123452015233963319,-0.50724519093837194816 ; -0.18555276198412737343,0.40061722316252434961 ; 0.37181981448693979253,-0.17325968219142176552 ; -0.51161578092029436071,-0.43544956783496435726 ; -0.15809057050791477939,0.3237346187548343357 ; 0.24938141179809353298,-0.14563807260629968443 ; -0.4410850929751095606,-0.29400621596562687143 ; -0.19238863541649192657,0.29863158302528308718 ; 0.24250792287362227251,-0.084784862368257829512 ; -0.37190697423471780203,-0.309373342281155983 ; -0.21556349411693073725,0.29007338496181866994 ; 0.24662389567201831175,-0.049444009034894792487 ; -0.3372164738703821163,-0.32599535518510897036 ; -0.23503715928209542585,0.28880228310276029324 ; 0.25694407721793599553,-0.023046653588218862785 ; -0.31479457215798800629,-0.3448272629740875006 ; -0.25209517751790111451,0.29287235772481545748 ; 0.27254351923198216756,-0.0024445319540177257167 ; -0.30013349931606225773,-0.36588346388981141111 ; -0.26672768173431404826,0.30182257792420147391 ; 0.29344693016079059777,0.012657480463004577853 ; -0.29209367512707334891,-0.3891933522549606006 ; -0.27811441375559786682,0.31567172351627070803 ; 0.31984174502015799701,0.020891698446799555899 ; -0.29095440306864639446,-0.41470600265690205077 ; -0.28460453460461010433,0.33447169082783989591 ; 0.35140389365293778212,0.019237607102409959303 ; -0.29809405043374392896,-0.44230042353392406973 ; -0.28344007123985115459,0.35794909570135724497 ; 0.38621138880840610863,0.0025762164015241673098 ; -0.31688506654918935368,-0.47182092741151032689 ; -0.2696571589714125694,0.38485242207865261177 ; 0.41798013130114330949,-0.037521187970981417781 ; -0.35669945222245802441,-0.5012189884266159412 ; -0.23260870002965125525,0.40853985295680106393 ; 0.42439558633283758216,-0.11282617213027651415 ; -0.44063198174895995551,-0.50813980847646678107 ; -0.16329862573530923298,0.39030796337721151978 ; 0.33811514589344227044,-0.19381421358626163554 ; -0.53055744312808894581,-0.38621214111975221694 ; -0.17185025068141757121,0.30662016434653083241 ; 0.23831820717466317694,-0.11608257686068315651 ; -0.40379436623070885659,-0.29319052218167213075 ; -0.20118237053461970887,0.29172688754129455502 ; 0.23954321827980773474,-0.069022639922116713063 ; -0.35451938248878084314,-0.31198438514458648463 ; -0.22334763687303690882,0.2868496242954856057 ; 0.24726213893104953545,-0.037289013031137935306 ; -0.32541988506948532622,-0.33075400541779792496 ; -0.24235656540970954009,0.28803306487651270107 ; 0.26027404781921337218,-0.012801394511054969838 ; -0.30609853229264927243,-0.35124698678255716899 ; -0.25900635641491209782,0.29426841916134605093 ; 0.2784669582250638431,0.0062440397203482600474 ; -0.29384485773949253762,-0.37385105724090489376 ; -0.2730067007934079415,0.30543570183403107032 ; 0.30217227794736428725,0.019469614970230836315 ; -0.28818929179203861546,-0.39871935525962554081 ; -0.2832343880221637189,0.32169475666996583119 ; 0.33163637741350115995,0.024846157766341692152 ; -0.28983687276644753972,-0.42586914619178423136 ; -0.2876327929002780448,0.34311899843429255474 ; 0.36628864210255529521,0.018473728533294292431 ; -0.30072723525105027331,-0.45535064597357716165 ; -0.28273285588115038003,0.36938191097603756408 ; 0.40336219146392526813,-0.0062111966138009844229 ; -0.32588864780611004335,-0.48731224634183589739 ; -0.26156969938358271,0.39874134969146712848 ; 0.4332932280993916363,-0.060679693179994331764 ; -0.38071219062333577776,-0.51774021779493506479 ; -0.20793645379329273037,0.41832597847804342539 ; 0.41697573567503387615,-0.15775430867425729864 ; -0.4971780737983561016,-0.49689343919691547624 ; -0.13408028198229832162,0.35572947363411777655 ; 0.26927362987571457076,-0.20053692237335982163 ; -0.51470125367609298461,-0.29548729312417754134 ; -0.18580704247024834586,0.30457435706928459584 ; 0.24554126587236080326,-0.097174772283400157047 ; -0.38610846805622028866,-0.30808192777216636404 ; -0.20999645581128842386,0.29274656858186481889 ; 0.24654919780813883134,-0.058359174620379622445 ; -0.34614026729578128982,-0.32286081274663902541 ; -0.22992066652498396873,0.28960159742890478896 ; 0.25490644957189917408,-0.030322853277308270403 ; -0.32115939206444649168,-0.34051410523394409768 ; }

	cp#1: 0.51245892538596249377,0.3005428266959092598 . It's critical orbit is bounded and enters cycle #1 length=3 and it's stability = |multiplier|=0.85666 =attractive 
cycle = {
-0.15708836166441453308,-0.53313337552781914219 ; -0.45864684434588676165,0.41804133400602072612 ; 0.59009996754766946836,0.283773874530894199 ; }

c src code

/*

  Adam Majewski
  adammaj1 aaattt o2 dot pl  // o like oxygen not 0 like zero 
  
  
  
"Almost failed"

Cubic set z^3+A*z+c with two cycles of length 3 and 105 at L20 in about 20h computed.

c=(-5947392-3850240*i) * 2^-25
A=(-17343094-31007487*i) * 2^-25

-----------

 gcc l.c -lm -Wall -march=native -fopenmp
a@zalman:~/Dokumenty/almost$ ./a.out
setup start
 end of setup 
compute Fatou image 
File 15000_100000.pgm saved . Comment = name = iWidth+IterMax	 f(z) = z^6+A*z+c where A= 15000.0000000000000000 ; -0.9240951240062714 	 c =-0.1772460937500000 ; -0.1147460937500000 
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of Julia set for fc(z)= z^3+A*z+c 
parameter c = ( -0.1772460937500000 ; -0.1147460937500000 ) 
parameter A = ( -0.5168644785881042 ; -0.9240951240062714 ) 
Image Width = 3.000000 in world coordinate
PixelWidth = 0.0002000133342223 
Maximal number of iterations = iterMax = 100000 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 9.3.0
__STDC__ = 1
__STDC_VERSION__ = 201710
c dialect = C18
a@zalman:~/Dokumenty/almost$ convert 15000_100000.pgm -resize 2000x2000 15.png

  
  ==============================================
  
  
  Structure of a program or how to analyze the program 
  
  
  ============== Image X ========================
  
  DrawImageOfX -> DrawPointOfX -> ComputeColorOfX 
  
  first 2 functions are identical for every X
  check only last function =  ComputeColorOfX
  which computes color of one pixel !
  
  

   
  ==========================================

  
  ---------------------------------
  indent d.c 
  default is gnu style 
  -------------------



  c console progam 
  
	export  OMP_DISPLAY_ENV="TRUE"	
  	gcc d.c -lm -Wall -march=native -fopenmp
  	time ./a.out > b.txt


  gcc l.c -lm -Wall -march=native -fopenmp


  time ./a.out

  time ./a.out >i.txt
  time ./a.out >e.txt
  
  
  
  
  
  
  convert -limit memory 1000mb -limit disk 1gb dd30010000_20_3_0.90.pgm -resize 2000x2000 10.png

  
  =======================
  # gnuplot "i.plt"
set terminal svg enhanced background rgb 'white'
set xlabel "re(z)"
set ylabel "DLD"
set title "Relation between z and DLD in the interior of Julia set for c = -1"
set output "interior.svg"
plot "i.txt" with lines

  ----------------------
  d0 - db  = 5.0000000000000000 - 4.5389870050569598 = 0.4610129949430402
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of Julia set for fc(z)= z^2 + c 
parameter c = ( -1.0000000000000000 ; 0.0000000000000000 ) 
Image Width = 4.000000 in world coordinate
PixelWidth = 0.004004 
Maximal number of iterations = iterMax = 1000 
ratio of image  = 1.000000 ; it should be 1.000 ...
gcc version: 7.5.0
  
  
*/

#include <stdio.h>
#include <stdlib.h>		// malloc
#include <string.h>		// strcat
#include <math.h>		// M_PI; needs -lm also
#include <complex.h>
#include <omp.h>		// OpenMP
#include <limits.h>		// Maximum value for an unsigned long long int



// https://sourceforge.net/p/predef/wiki/Standards/

#if defined(__STDC__)
#define PREDEF_STANDARD_C_1989
#if defined(__STDC_VERSION__)
#if (__STDC_VERSION__ >= 199409L)
#define PREDEF_STANDARD_C_1994
#endif
#if (__STDC_VERSION__ >= 199901L)
#define PREDEF_STANDARD_C_1999
#endif
#endif
#endif




/* --------------------------------- global variables and consts ------------------------------------------------------------ */



// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1 
//unsigned int ix, iy; // var
static unsigned int ixMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int ixMax;	//
static unsigned int iWidth;	// horizontal dimension of array

static unsigned int iyMin = 0;	// Indexes of array starts from 0 not 1
static unsigned int iyMax;	//

static unsigned int iHeight = 15000;	//  
// The size of array has to be a positive constant integer 
static unsigned long long int iSize;	// = iWidth*iHeight; 

// memmory 1D array 
unsigned char *data;
//unsigned char *edge;
//unsigned char *edge2;

// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax;	// = i2Dsize-1  = 
// The size of array has to be a positive constant integer 
// unsigned int i1Dsize ; // = i2Dsize  = (iMax -iMin + 1) =  ;  1D array with the same size as 2D array



// zoom to part of period
static const double ZxMin = -1.5; //0.6;	//-0.05;
static const double ZxMax = 1.5;	//0.75;
static const double ZyMin = -1.5;	//-0.1;
static const double ZyMax = 1.5;	//0.7;
static double PixelWidth;	// =(ZxMax-ZxMin)/ixMax;
static double PixelHeight;	// =(ZyMax-ZyMin)/iyMax;
static double ratio;


// complex numbers of parametr plane 
//https://fractalforums.org/fractal-mathematics-and-new-theories/28/julia-sets-true-shape-and-escape-time/2725/msg22791#msg22791
/*

c=(-5947392-3850240*i) * 2^-25
A=(-17343094-31007487*i) * 2^-25

*/
double complex c = - 0.11474609375*I -0.17724609375;
	// parameter of function fc(z)=z^6 +A*x+ c  = (15728640-19136512*i) * (2^-25)
                   

double complex  A=  - 0.9240951240062714 *I - 0.5168644785881043;

complex double f(complex double z) {

	return  z*z*z +A*z+ c;		// complex iteration z^6+A*z+c
	}





/*
ER = pow(10,ERe);
   AR = pow(10,-ARe);
 */
 
int ARe_3 = 2; 
double AR_3 ; //= 1e-15;			// increase ARe until black ( unknown) points disapear 
double AR2_3;

int ARe_105 = 2; 
double AR_105 ; //= 1e-15;			// increase ARe until black ( unknown) points disapear 
double AR2_105;



double ER;			//= 1e60;
double ER2;			//ER2 = ER*ER
double AR2;			//AR2 = AR*AR

complex double z3  = 0.5900999663884065+0.2837738661170331*I;
complex double z105 = -0.5147160557032144-0.2946889400739363*I; //
//-0.3861355806430767 -0.3080847982463079*I;


/*
[-0.1570883645161246,-0.5331333747802431],
[-0.4586468403362385,0.4180413342397985],
[0.5900999663884065,0.2837738661170331]]


period 105 
*/

int IterMax = 100000;




/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior3 = 100;
unsigned char iColorOfInterior105 = 30;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 20;

// pixel counters
unsigned long long int uUnknown = 0;
unsigned long long int uInterior3 = 0;
unsigned long long int uInterior105 = 0;
unsigned long long int uExterior = 0;



/* ------------------------------------------ functions -------------------------------------------------------------*/





//------------------complex numbers -----------------------------------------------------





// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx (int ix)
{
  return (ZxMin + ix * PixelWidth);
}

// uses globaal cons
double
GiveZy (int iy)
{
  return (ZyMax - iy * PixelHeight);
}				// reverse y axis


complex double
GiveZ (int ix, int iy)
{
  double Zx = GiveZx (ix);
  double Zy = GiveZy (iy);

  return Zx + Zy * I;


}




double cabs2(complex double z){

	return creal(z)*creal(z)+cimag(z)*cimag(z);


}




// ****************** DYNAMICS = trap tests ( target sets) ****************************


/* -----------  array functions = drawing -------------- */

/* gives position of 2D point (ix,iy) in 1D array  ; uses also global variable iWidth */
unsigned int
Give_i (unsigned int ix, unsigned int iy)
{
  return ix + iy * iWidth;
}



unsigned int Give_i_from_z(complex double z){

	unsigned int ix = (creal(z)-ZxMin)/PixelWidth;
	unsigned int iy = (ZyMax - cimag(z))/PixelHeight;
	return Give_i(ix,iy);
}

// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************

// from Source to Destination
int
ComputeBoundaries (unsigned char S[], unsigned char D[])
{

  unsigned int iX, iY;		/* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i;		/* index of 1D array  */
  /* sobel filter */
  unsigned char G, Gh, Gv;
  // boundaries are in D  array ( global var )

  // clear D array
  memset (D, iColorOfExterior, iSize * sizeof (*D));	// for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);

  // printf(" find boundaries in S array using  Sobel filter\n");   
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
  for (iY = 1; iY < iyMax - 1; ++iY)
    {
      for (iX = 1; iX < ixMax - 1; ++iX)
	{
	  Gv =
	    S[Give_i (iX - 1, iY + 1)] + 2 * S[Give_i (iX, iY + 1)] +
	    S[Give_i (iX - 1, iY + 1)] - S[Give_i (iX - 1, iY - 1)] -
	    2 * S[Give_i (iX - 1, iY)] - S[Give_i (iX + 1, iY - 1)];
	  Gh =
	    S[Give_i (iX + 1, iY + 1)] + 2 * S[Give_i (iX + 1, iY)] +
	    S[Give_i (iX - 1, iY - 1)] - S[Give_i (iX + 1, iY - 1)] -
	    2 * S[Give_i (iX - 1, iY)] - S[Give_i (iX - 1, iY - 1)];
	  G = sqrt (Gh * Gh + Gv * Gv);
	  i = Give_i (iX, iY);	/* compute index of 1D array from indices of 2D array */
	  if (G == 0)
	    {
	      D[i] = 255;
	    }			/* background */
	  else
	    {
	      D[i] = 0;
	    }			/* boundary */
	}
    }



  return 0;
}



// copy from Source to Destination
int
CopyBoundaries (unsigned char S[], unsigned char D[])
{

  unsigned int iX, iY;		/* indices of 2D virtual array (image) = integer coordinate */
  unsigned int i;		/* index of 1D array  */


  //printf("copy boundaries from S array to D array \n");
  for (iY = 1; iY < iyMax - 1; ++iY)
    for (iX = 1; iX < ixMax - 1; ++iX)
      {
	i = Give_i (iX, iY);
	if (S[i] == 0)
	  D[i] = 0;
      }



  return 0;
}



int IsEscaping(complex double z){

	if (cabs2 (z) > ER2) return 1;
	return 0;
}


int IsAttracting3(complex double z){

	if (cabs2 (z - z3) < AR2_3) return 1;
	return 0;
}





int IsAttracting105(complex double z){

	if (cabs2 (z - z105) < AR2_105) return 1;
	return 0;
}






// find basin and it's color using simple test ( bailout ) for escaping to infinity 

unsigned char
ComputeColor_Fatou (complex double z, int IterMax)
{

  int i;			// number of iteration
  for (i = 0; i < IterMax; ++i)
    {




      z = f(z);
      if (IsEscaping(z)) // escaping = exterior
	{
	  uExterior += 1;
	  return iColorOfExterior;
	}			 

	
	if (IsAttracting3(z)) // 
	{
	  uInterior3 += 1;
	  return iColorOfInterior3;
	}			 


	if (IsAttracting105(z)) //
	{
	  uInterior105 += 1;
	  return iColorOfInterior105;
	}			 





    }

  //
  uUnknown += 1;
  return iColorOfUnknown;


}





// plots raster point (ix,iy) 
int
DrawFatouPoint (unsigned char A[], int ix, int iy, int IterMax)
{
  int i;			/* index of 1D array */
  unsigned char iColor = 0;
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ (ix, iy);
  iColor = ComputeColor_Fatou (z, IterMax);
  A[i] = iColor;		// interior

  return 0;
}




// fill array 
// uses global var :  ...
// scanning complex plane 
int
DrawFatouImage (unsigned char A[], int IterMax)
{
  unsigned int ix, iy;		// pixel coordinate 

  fprintf (stderr, "compute Fatou image \n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior3, uInterior105, uExterior)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      fprintf (stderr," %d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix)
	DrawFatouPoint (A, ix, iy, IterMax);	//  
    }

  return 0;
}


//=========





// plots raster point (ix,iy) 
int MarkTrapPoint (unsigned char A[], int ix, int iy)
{
  int i;			/* index of 1D array */
  
  complex double z;


  i = Give_i (ix, iy);		/* compute index of 1D array from indices of 2D array */
  z = GiveZ (ix, iy);
  if (IsAttracting3(z))   A[i] = 255 - A[i];		// inversion
  
  if (IsAttracting105(z))   A[i] = 255 - A[i];		// inversion

  return 0;
}



// fill array 
// uses global var :  ...
// scanning complex plane 
int MarkTraps (unsigned char A[])
{
  unsigned int ix, iy;		// pixel coordinate 

  fprintf (stderr, "Mark traps\n");
  // for all pixels of image 
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax, uUnknown, uInterior3, uInterior105, uExterior)
  for (iy = iyMin; iy <= iyMax; ++iy)
    {
      fprintf (stderr," %d from %d \r", iy, iyMax);	//info 
      for (ix = ixMin; ix <= ixMax; ++ix)
	MarkTrapPoint (A, ix, iy);	//  
    }

  return 0;
}


//======================================================================================



int IsInside (int x, int y, int xcenter, int ycenter, int r){

	
	double dx = x- xcenter;
	double dy = y - ycenter;
	double d = sqrt(dx*dx+dy*dy);
	if (d<r) 
		return 1;
	return 0;
	  

} 

int PlotPoint(complex double z, unsigned char A[]){

	
	unsigned int ix_seed = (creal(z)-ZxMin)/PixelWidth;
	unsigned int iy_seed = (ZyMax - cimag(z))/PixelHeight;
	unsigned int i;
	
	
	 /* mark seed point by big pixel */
  	int iSide =3.0*iWidth/2000.0 ; /* half of width or height of big pixel */
  	int iY;
  	int iX;
  	for(iY=iy_seed-iSide;iY<=iy_seed+iSide;++iY){ 
    		for(iX=ix_seed-iSide;iX<=ix_seed+iSide;++iX){ 
    			if (IsInside(iX, iY, ix_seed, iy_seed, iSide)) {
      			i= Give_i(iX,iY); /* index of _data array */
      			A[i]= 255;}}}
	
	
	return 0;
	
}


// fill array 
// uses global var :  ...
// scanning complex plane 
int MarkAttractors (unsigned char A[])
{
  
	int iter;
	
	complex double z;
  	fprintf (stderr, "mark attractors \n");
  
  	// period 3 cycle
  	z = z3;
  	PlotPoint(z, A);
	for (iter = 0; iter < 3; ++iter)
    		{ z  = f(z);
    		  PlotPoint(z, A);	
    		 
      				}
      	// period 105			
      	z = z105;
  	PlotPoint(z, A);
	for (iter = 0; iter < 105; ++iter)
    		{ z  = f(z);
    		  PlotPoint(z, A);	
    		 
      				}

  return 0;
}


//======================================================================================










// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************

int
SaveArray2PGMFile (unsigned char B[], int ia, int ib,  int ic, int id,  int ie, char *comment)
{

  FILE *fp;
  const unsigned int MaxColorComponentValue = 255;	/* color component is coded from 0 to 255 ;  it is 8 bit color file */
  char name[100];		/* name of file */
  snprintf (name, sizeof name, "%d_%d_%d_%d_%d", ia, ib, ic ,id,ie);	/*  */
  char *filename = strcat (name, ".pgm");
  char long_comment[200];
  sprintf (long_comment, "%s\t f(z) = z^6+A*z+c where A= %.16f ; %.16f \t c =%.16f ; %.16f", comment, creal(A),cimag(A), creal(c), cimag(c));





  // save image array to the pgm file 
  fp = fopen (filename, "wb");	// create new file,give it a name and open it in binary mode 
  fprintf (fp, "P5\n # %s\n %u %u\n %u\n", long_comment, iWidth, iHeight, MaxColorComponentValue);	// write header to the file
  fwrite (B, iSize, 1, fp);	// write array with image data bytes to the file in one step 
  fclose (fp);

  // info 
  printf ("File %s saved ", filename);
  if (long_comment == NULL || strlen (long_comment) == 0)
    printf ("\n");
  else
    printf (". Comment = %s \n", long_comment);

  return 0;
}




int
PrintCInfo ()
{

  printf ("gcc version: %d.%d.%d\n", __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__);	// https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
  // OpenMP version is displayed in the console : export  OMP_DISPLAY_ENV="TRUE"

  printf ("__STDC__ = %d\n", __STDC__);
  printf ("__STDC_VERSION__ = %ld\n", __STDC_VERSION__);
  printf ("c dialect = ");
  switch (__STDC_VERSION__)
    {				// the format YYYYMM 
    case 199409L:
      printf ("C94\n");
      break;
    case 199901L:
      printf ("C99\n");
      break;
    case 201112L:
      printf ("C11\n");
      break;
    case 201710L:
      printf ("C18\n");
      break;
      //default : /* Optional */

    }

  return 0;
}


int
PrintProgramInfo ()
{


  // display info messages
  printf ("Numerical approximation of Julia set for fc(z)= z^3+A*z+c \n");
  //printf ("iPeriodParent = %d \n", iPeriodParent);
  //printf ("iPeriodOfChild  = %d \n", iPeriodChild);
  printf ("parameter c = ( %.16f ; %.16f ) \n", creal (c), cimag (c));
  printf ("parameter A = ( %.16f ; %.16f ) \n", creal (A), cimag (A));

  printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
  printf ("PixelWidth = %.16f \n", PixelWidth);
  printf ("AR_3 = %.16f \n", AR_3);
  printf ("ER = %.16f \n", ER);
   


  //printf("pixel counters\n");
  //printf ("uUnknown = %llu\n", uUnknown);
  //printf ("uExterior = %llu\n", uExterior);
  //printf ("uInterior = %llu\n", uInterior);
  //printf ("Sum of pixels  = %llu\n", uInterior+uExterior + uUnknown);
  //printf ("all pixels of the array = iSize = %llu\n", iSize);


  // image corners in world coordinate
  // center and radius
  // center and zoom
  // GradientRepetition
  printf ("Maximal number of iterations = iterMax = %d \n", IterMax);
  printf ("ratio of image  = %f ; it should be 1.000 ...\n", ratio);
  
  
  
  printf ("pixel counters\n");
  printf ("uUnknown = %llu\n", uUnknown);
  printf ("uExterior = %llu\n", uExterior);
  printf ("uInterior3 = %llu\n", uInterior3);
  printf ("uInterior105 = %llu\n", uInterior105);
  printf ("Sum of pixels  = %llu\n", uInterior3 + uInterior105 + uExterior + uUnknown);
  printf ("all pixels of the array = iSize = %llu\n", iSize);
  printf ("Maximum value for an unsigned long long int = ULLONG_MAX = %llu\n",
	  ULLONG_MAX);

  //




  return 0;
}






// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;;  setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************

int
setup ()
{

  fprintf (stdout, "setup start\n");






  /* 2D array ranges */

  iWidth = iHeight;
  iSize = iWidth * iHeight;	// size = number of points in array 
  // iy
  iyMax = iHeight - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
  //ix

  ixMax = iWidth - 1;

  /* 1D array ranges */
  // i1Dsize = i2Dsize; // 1D array with the same size as 2D array
  iMax = iSize - 1;		// Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].

  /* Pixel sizes */
  PixelWidth = (ZxMax - ZxMin) / ixMax;	//  ixMax = (iWidth-1)  step between pixels in world coordinate 
  PixelHeight = (ZyMax - ZyMin) / iyMax;
  ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight);	// it should be 1.000 ...

  // minimal radius of circla containing all the Julia set
  ER = 2.0; 
  ER2 = ER*ER;
  
  // radius of maximal circle which is inside component
  AR_3 = 7.0*pow (10, -ARe_3);
  AR2_3 = AR_3*AR_3;
  
  AR_105 = 2.5*pow (10, -ARe_105); // adjust the radius : 
  AR2_105 = AR_105*AR_105;


  /* create dynamic 1D arrays for colors ( shades of gray ) */
  data = malloc (iSize * sizeof (unsigned char));


  if (data == NULL)
    {
      fprintf (stderr, " Could not allocate memory");
      return 1;
    }





 


  fprintf (stdout, " end of setup \n");

  return 0;

}				// ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;




int
end ()
{


  fprintf (stdout, " allways free memory (deallocate )  to avoid memory leaks \n");	// https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
  free (data);


  PrintProgramInfo ();
  PrintCInfo ();
  return 0;

}

// ********************************************************************************************************************
/* -----------------------------------------  main   -------------------------------------------------------------*/
// ********************************************************************************************************************

int
main ()
{
  setup ();


  DrawFatouImage (data, IterMax);	// first find Fatou
  SaveArray2PGMFile (data, iWidth, IterMax, ARe_3, ARe_105, 1,"name = iWidth_IterMax_ARe_ ARe_3_ARe_105_1");
  
  MarkTraps(data );
  SaveArray2PGMFile (data, iWidth, IterMax, ARe_3,  ARe_105,2,"name = iWidth_IterMax+1_ARe ARe_3_ARe_105_1");

  MarkAttractors(data);
  SaveArray2PGMFile (data, iWidth, IterMax, ARe_3,  ARe_105,3,"name = iWidth_IterMax+1_ARe ARe_3_ARe_105_1");
  
  end ();

  return 0;
}

text output

OPENMP DISPLAY ENVIRONMENT BEGIN
  _OPENMP = '201511'
  OMP_DYNAMIC = 'FALSE'
  OMP_NESTED = 'FALSE'
  OMP_NUM_THREADS = '8'
  OMP_SCHEDULE = 'DYNAMIC'
  OMP_PROC_BIND = 'FALSE'
  OMP_PLACES = ''
  OMP_STACKSIZE = '0'
  OMP_WAIT_POLICY = 'PASSIVE'
  OMP_THREAD_LIMIT = '4294967295'
  OMP_MAX_ACTIVE_LEVELS = '2147483647'
  OMP_CANCELLATION = 'FALSE'
  OMP_DEFAULT_DEVICE = '0'
  OMP_MAX_TASK_PRIORITY = '0'
  OMP_DISPLAY_AFFINITY = 'FALSE'
  OMP_AFFINITY_FORMAT = 'level %L thread %i affinity %A'
OPENMP DISPLAY ENVIRONMENT END

File 15000_100000_2_2_2.pgm saved . Comment = name = iWidth_IterMax+1_ARe ARe_3_ARe_105_1	 f(z) = z^6+A*z+c where A= 15000.0000000000000000 ; -0.9240951240062714 	 c =2.0000000000000000 ; 0.0000000000000000 
mark attractors 
File 15000_100000_2_2_3.pgm saved . Comment = name = iWidth_IterMax+1_ARe ARe_3_ARe_105_1	 f(z) = z^6+A*z+c where A= 15000.0000000000000000 ; -0.9240951240062714 	 c =2.0000000000000000 ; 0.0000000000000000 
 allways free memory (deallocate )  to avoid memory leaks 
Numerical approximation of Julia set for fc(z)= z^3+A*z+c 
parameter c = ( -0.1772460937500000 ; -0.1147460937500000 ) 
parameter A = ( -0.5168644785881042 ; -0.9240951240062714 ) 
Image Width = 3.000000 in world coordinate
PixelWidth = 0.0002000133342223 
AR_3 = 0.0700000000000000 
ER = 2.0000000000000000 
Maximal number of iterations = iterMax = 100000 
ratio of image  = 1.000000 ; it should be 1.000 ...
pixel counters
uUnknown = 0
uExterior = 138102480
uInterior3 = 12516176
uInterior105 = 12668216
Sum of pixels  = 163286872
all pixels of the array = iSize = 225000000
Maximum value for an unsigned long long int = ULLONG_MAX = 18446744073709551615
gcc version: 9.3.0
__STDC__ = 1
__STDC_VERSION__ = 201710
c dialect = C18

real	2m5,118s
user	16m11,754s
sys	0m0,918s

References

  1. fractalforums.org : julia-sets-true-shape-and-escape-time

Captions

Cubic Julia set z^3+A*z+c with two cycles of length 3 and 105. c=(-5947392-3850240*i) * 2^-25 A=(-17343094-31007487*i) * 2^-25

Items portrayed in this file

depicts

12 July 2020

image/png

348b3fef0243871fa758be7a41f9f5a132736e85

571,901 byte

2,000 pixel

2,000 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:25, 12 July 2020Thumbnail for version as of 16:25, 12 July 20202,000 × 2,000 (558 KB)Soul windsurferbetter exif notes inside file
15:15, 12 July 2020Thumbnail for version as of 15:15, 12 July 20202,000 × 2,000 (558 KB)Soul windsurferUploaded own work with UploadWizard

The following page uses this file:

Metadata