English: 3D view of critical orbit of c = i*0.21687214+0.37496784 for complex quadratic polynomial. It tends to weakly attracting fixed point zf with abs(multiplier(zf)=0.99993612384259 . Point c is near root of period 6 component of Mandelbrot set.
Polski: Trójwymiarowy widok orbity punktu krytycznego dla fc(z)=z*z+c. Punkt c jest położonego tuż przy granicy zbioru Mandelbrota. Orbita punktu krytycznego dąży do słabo przyciągającego punktu stałego.
Note that axis z is different thing that complex variable
XY complex plane is dynamical plane of complex quadratic polynomial.
Iterations :
( blue point )
( red point)
( red point)
...
( red point)
This image showes that orbit of critical point tends to weakly attracting fixed point.
Maxima source code
/*
this is batch file for Maxima 5.13.0
http://maxima.sourceforge.net/
tested in wxMaxima 0.7.1
using draw package ( interface to gnuplot ) to draw on the screen
draws critical orbit = orbit of critical point
*/
c:%i*0.21687214+0.37496784;
/* define function ( map) for dynamical system z(n+1)=f(zn,c) */
f(z,c):=expand (z*z + c); /* expand speed up computations and fix the stack overflow problem. Robert Dodier */
/* maximal number of iterations */
iMax:100000; /* to big couses bind stack overflow */
EscapeRadius:10;
/* define z-plane ( dynamical ) */
zxMin:-0.8;
zxMax:0.2;
zyMin:-0.2;
zyMax:0.8;
/* resolution is proportional to number of details and time of drawing */
iXmax:2000;
iYmax:1000;
/* compute critical point */
zcr:rhs(solve(diff(f(z,c),z,1)));
/* save critical point to 2 lists */
xcr:makelist (realpart(zcr), i, 1, 1); /* list of re(z) */
ycr:makelist (imagpart(zcr), i, 1, 1); /* list of im(z) */
/* ------------------- compute forward orbit of critical point ----------*/
z:zcr; /* first point */
orbit:[z];
for i:1 thru iMax step 1 do
block
(
z:f(z,c),
if abs(z)>EscapeRadius then return(i) else orbit:endcons(z,orbit)
);
/*-------------- save orbit to draw it later on the screen ----------------------------- */
/* save the z values to 2 lists */
xx:makelist (realpart(f(zcr,c)), i, 1, 1); /* list of re(z) */
yy:makelist (imagpart(f(zcr,c)), i, 1, 1); /* list of im(z) */
zz:makelist (1, i, 1, 1); /* list of iterations */
for i:2 thru length(orbit) step 1 do
block
(
xx:cons(realpart(orbit[i]),xx),
yy:cons(imagpart(orbit[i]),yy),
zz:cons(i,zz)
);
/* drawing procedures */
load(draw);/* draw package by Mario Rodriguez Riotorto http://riotorto.users.sourceforge.net/gnuplot/archive copy at the Wayback Machine */
draw3d(
file_name = "critical_orbit_3d",
terminal = 'png,
pic_width = iXmax,
pic_height = iYmax,
columns = 1,
title= concat(""),
user_preamble = "set grid",
xlabel = "Z.re ",
ylabel = "Z.im",
zlabel ="iteration",
point_type = filled_circle,
/*key = "critical point",*/
color =blue,
points_joined = false,
points(xcr,ycr,[0]),
points_joined = false,
color =red,
point_size = 0.5,
points(xx,yy,zz)
);
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
You may select the license of your choice.
Captions
Add a one-line explanation of what this file represents
{{Information |Description={{en|1=3D view of critical orbit of c:%i*0.21687214+0.37496784 for complex quadratic polynomial. It tends to weakly attracting point near root of period 6 component.}} {{pl|1=Trójwymiarowy widok orbity punktu krytycznego dla fc