File:Cardan Gear linear movement packed vertical.gif
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Cardan_Gear_linear_movement_packed_vertical.gif (270 × 410 pixels, file size: 1.85 MB, MIME type: image/gif, looped, 452 frames, 18 s)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionCardan Gear linear movement packed vertical.gif |
English: The "Cardan Straight Line Mechanism" (or "Epicyloid Straight-Line Linkage") transforms rotation into a linear movement. The condition is that the number to teeth of the stationary sun (yellow, here 32 teeth) gear is twice the number of teeth of the outer planet (red, here 16 teeth). The lever on the outer planet is as long as the distance between the centers of the sun and the outer planet. The inner planet (blue) is an idler gear, the number of its teeth is irrelevant for the function. |
Date | |
Source |
Own work; Based on: |
Author | Jahobr |
Other versions |
|
GIF development InfoField | |
Source code InfoField | MATLAB codefunction Cardan_Gear_linear_movement()
% Source code for drawing Cardan Gears that produces linear movement.
% The shape of the gears is not precise, it creates a decent GIF and a SVG.
%
% 2018-05-28 Jahobr
[pathstr,fname] = fileparts(which(mfilename)); % save files under the same name and at file location
modul = 16;
carrierCol = round([0.1 0.7 0.1].*255)./255; % green
sunCol = round([0.95 0.65 0 ].*255)./255; % yellow (obviously)
palnetColOut = round([1 0.2 0.2].*255)./255; % red
palnetColIn = round([0.2 0.2 1 ].*255)./255; % blue (obviously)
lineCol = round([0.6 0.2 0.8].*255)./255; % violet
for currentCase = 1:2;
figHandle = figure(17674755); clf
set(figHandle, 'Units','pixel');
set(figHandle, 'Color',[1 1 1]);
set(figHandle, 'GraphicsSmoothing','on') % requires at least version 2014b
nFrames = 452;
switch currentCase
case 1 % Stationary_Sun
saveName = [fname '_packed'];
teethSun = 32; % must be divisible by 2
teethPlanIn = 12; % Idler, tooth number does not matter
scaleReduction = 3; % reduction for nice antialiasing
ySize = 270; % pixel
case 2 % Stationary_Sun
saveName = [fname '_linedUp'];
teethSun = 32; % must be divisible by 2
teethPlanIn = 20; % Idler, tooth number does not matter
scaleReduction = 3; % reduction for nice antialiasing
ySize = 250; % pixel
end
teethPlanOut = teethSun/2; % necessary condition
radiusSun = modul.*teethSun./2; % effective radius
radiusPlanIn = modul.*teethPlanIn./2; % effective radius
radiusPlanOut = modul.*teethPlanOut./2; % effective radius
distInOut = radiusPlanIn+radiusPlanOut; % distance of centers
distSunIn = radiusSun+radiusPlanIn; % distance of centers
angleCarrier = -linspace(0,pi*2,nFrames+1); % define gear position in frames
angleCarrier = angleCarrier(1:end-1); % remove last frame, it would be double
angleCarrier = circshift(angleCarrier,[0,round(nFrames/9)]);
anglePlanOut = -angleCarrier; % gear ratio
anglePlanIn = angleCarrier.*( teethSun/teethPlanIn+1 ); % gear ratio
angleSun = zeros(size(angleCarrier));
switch currentCase
case 1 % Stationary_Sun
distSunOut = radiusSun+radiusPlanOut+modul*2.5;
anglePlanOut = anglePlanOut + (pi/teethPlanOut); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
anglePlanIn = anglePlanIn + (pi/teethPlanIn)*1.3; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
angleSun = angleSun+(pi/teethSun)*1.5 ; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
case 2 % Stationary_Sun
distSunOut = radiusSun+radiusPlanIn*2+radiusPlanOut;
anglePlanOut = anglePlanOut + (pi/teethPlanOut); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
% anglePlanIn = anglePlanIn + (pi/teethPlanIn); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
angleSun = angleSun+(pi/teethSun); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
end
angPlanInOffset = acos((distInOut^2-distSunIn^2-distSunOut^2) / (-2*distSunIn*distSunOut)); % triangle calculation
xlimValues = [-1.07 1.07]*(distSunOut*2);
ylimValues = [-1.07 1.07]*(distSunOut+radiusPlanOut);
xRange = xlimValues(2)-xlimValues(1);
yRange = ylimValues(2)-ylimValues(1);
xSize = round(ySize/10/yRange*xRange)*10; % pixel
set(figHandle, 'position',[1 1 xSize*scaleReduction ySize*scaleReduction]); % big start image for antialiasing later [x y width height]
axesHandle = axes; hold(axesHandle,'on');
set(axesHandle,'position',[0 0 1 1]); % stretch axis as big as figure, [x y width height]
axis equal
axis off % invisible axes (no ticks)
xlim(xlimValues); ylim(ylimValues);
drawnow;
reducedRGBimage = uint8(ones(ySize,xSize,3,nFrames)); % allocate
x_y_Crank = [-modul*1.5 -modul*1.5 distSunOut+modul distSunOut+modul;... % x crank outline
-modul*1.5 modul*1.5 modul -modul]; % y
for iFrame = 1:nFrames
cla(axesHandle) % fresh frame
%% sun
drawCogWheel(axesHandle,[0 0],teethSun ,modul,sunCol,angleSun(iFrame));
%% planets
[Xin,Yin] = pol2cart(angPlanInOffset+angleCarrier(iFrame) ,distSunIn);
drawCogWheel(axesHandle,[Xin,Yin],teethPlanIn,modul,palnetColIn,anglePlanIn(iFrame)); % inner planetary gear (Idler)
[Xout,Yout] = pol2cart(angleCarrier(iFrame) ,distSunOut);
drawCogWheel(axesHandle,[Xout,Yout],teethPlanOut,modul,palnetColOut,anglePlanOut(iFrame)); % outer planetary gear
%% carrier
carrierPoints =0:0.1:2*pi-angleCarrier(iFrame); % circle points
r = min(radiusPlanIn,radiusPlanOut)*0.5; % radius of carrier frame
xSunCar = cos(carrierPoints)*r; ySunCar = sin(carrierPoints)*r; % points on left circle of carrier; (start on the right; counterClock)
xOutCar = -cos(carrierPoints)*r+Xout; yOutCar = -sin(carrierPoints)*r+Yout; % points on right circle of carrier; (start on the left; counterClock)
xInCar = sin(carrierPoints)*r+Xin; yInCar = -cos(carrierPoints)*r+Yin; % points on top circle of carrier; (start on the bottom; counterClock)
xCarrier = [xSunCar xOutCar xInCar]; yCarrier = [ySunCar yOutCar yInCar]; % assemble carrier
valPoint = convhull(xCarrier, yCarrier); % Convex hull
xCarrier = xCarrier(valPoint); yCarrier = yCarrier(valPoint); % remove concave carrier points
plot(xCarrier,yCarrier,'color',[0 0 0],'LineWidth',13) % black outline
plot(xCarrier,yCarrier,'color',carrierCol,'LineWidth',10) % carrierCol "filling"
circlePatch(0,0,r*1.3,carrierCol,2); % sun carrier
circlePatch(0,0,r*0.8,sunCol,2); % sun axle
circlePatch(Xin,Yin,r*1.3,carrierCol,2); % inner planet carrier
circlePatch(Xin,Yin,r*0.8,palnetColIn,2); % inner planet axle
circlePatch(Xout,Yout,r*1.3,carrierCol,2); % outer planet carrier
rotM = [cos(-angleCarrier(iFrame)) -sin(-angleCarrier(iFrame)); -sin(+angleCarrier(iFrame)) cos(-angleCarrier(iFrame))]; % rotation matrix
vecTemp = rotM*x_y_Crank; % rotate crank
patch(vecTemp(1,:)+Xout,vecTemp(2,:)+Yout,palnetColOut,'EdgeColor',[0 0 0],'LineWidth',2) % raw the crank trapezoid
circlePatch(Xout,Yout,r*0.8,palnetColOut,2); % outer planet axle
plot([-2 2]*distSunOut,[0 0],'Linewidth',8,'Color',lineCol); % plot the line
circlePatch(cos(angleCarrier(iFrame))*2*distSunOut,0,modul*2,palnetColOut,2); % outer planet carrier
circlePatch(cos(angleCarrier(iFrame))*2*distSunOut,0,modul*1.2,lineCol,2); % outer planet carrier
%% save animation
f = getframe(figHandle);
reducedRGBimage(:,:,:,iFrame) = imReduceSize(f.cdata,scaleReduction); % the size reduction: adds antialiasing
if iFrame == 1 % SVG
if ~isempty(which('plot2svg'))
plot2svg(fullfile(pathstr, [saveName '_horizontal.svg']),figHandle) % by Juerg Schwizer
else
disp('plot2svg.m not available; see http://www.zhinst.com/blogs/schwizer/');
end
end
end
map = createImMap(reducedRGBimage,16,[0 0 0;1 1 1;carrierCol;sunCol;palnetColOut;palnetColIn;lineCol]); % colormap
im = uint8(ones(ySize,xSize,1,nFrames)); % allocate
for iFrame = 1:nFrames
im(:,:,1,iFrame) = rgb2ind(reducedRGBimage(:,:,:,iFrame),map,'nodither'); % rgb to colormap image
end
imwrite(im,map,fullfile(pathstr, [saveName '_horizontal.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
disp([saveName '_horizontal.gif has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit
imwrite(fliplr(permute(im,[2 1 3 4])),map,fullfile(pathstr, [saveName '_vertical.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
disp([saveName '_vertical.gif has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit
end
function drawCogWheel(axesHandle,center,toothNumber,modul,colFilling,startOffset)
% DRAWTOOTHEDWHEEL - draw a simple Toothed Wheel
%
% Input:
% axesHandle:
% center: [x y]
% toothNumber: scalar
% modul: scalar tooth "size"
% colFilling: color of filling [r g b]
% startOffset: start rotation (scalar)[rad]
effectiveRadius = modul*toothNumber/2; % effective effectiveRadius
outsideRadius = effectiveRadius+1* modul; % +---+ +---+
upperRisingRadius = effectiveRadius+0.5*modul; % / \ / \
% effective Radius % / \ / \
lowerRisingRadius = effectiveRadius-0.5*modul; % I I I I
rootRadius = effectiveRadius-1.1*modul; % + - - - + + - - - + +
angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth
angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));
angleOffPoints = angleOffPoints+startOffset; % apply rotation offset
angleOffPoints( 7:16:end) = angleOffPoints( 7:16:end) + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints( 8:16:end) = (angleOffPoints( 7:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints( 6:16:end) = angleOffPoints( 6:16:end) + 1/toothNumber^1.7; % hack to create slender tooth
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender tooth
radiusOffPoints = angleOffPoints; % allocate with correct site
radiusOffPoints(1:16:end) = rootRadius; % center bottom I
radiusOffPoints(2:16:end) = rootRadius; % left bottom I
radiusOffPoints(3:16:end) = rootRadius; % left bottom corner +
radiusOffPoints(4:16:end) = lowerRisingRadius; % lower rising bottom \
radiusOffPoints(5:16:end) = effectiveRadius; % rising edge \
radiusOffPoints(6:16:end) = upperRisingRadius; % upper rising edge \
radiusOffPoints(7:16:end) = outsideRadius; % right top corner +
radiusOffPoints(8:16:end) = outsideRadius; % right top I
radiusOffPoints(9:16:end) = outsideRadius; % center top I
radiusOffPoints(10:16:end) = outsideRadius; % left top I
radiusOffPoints(11:16:end) = outsideRadius; % left top corner +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge /
radiusOffPoints(13:16:end) = effectiveRadius; % falling edge /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge /
radiusOffPoints(15:16:end) = rootRadius; % right bottom corner +
radiusOffPoints(16:16:end) = rootRadius; % right bottom I
[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);
X = X+center(1); % center offset
Y = Y+center(2); % center offset
patch(X,Y,colFilling,'EdgeColor',[0 0 0],'LineWidth',2)
% plot(axesHandle,X,Y,'-x','linewidth',2,'color',[0 0 0]);
% %% effective Radius
% [X,Y] = pol2cart(angleOffPoints,effectiveRadius);
% X = X+center(1); % center offset
% Y = Y+center(2); % center offset
% plot(axesHandle,X,Y,'-.','color',[0 0 0]);
function circlePatch(x,y,r,col,linW)
% x coordinates of the center
% y coordinates of the center
% r is the radius of the circle
% col patch color
% linW LineWidth
angleOffPoints = linspace(0,2.001*pi,200);
xc = x + r*cos(angleOffPoints);
yc = y + r*sin(angleOffPoints);
patch(xc,yc,col,'EdgeColor',[0 0 0],'LineWidth',linW);
function im = imReduceSize(im,redSize)
% Input:
% im: image, [imRows x imColumns x nChannel x nStack] (unit8)
% imRows, imColumns: must be divisible by redSize
% nChannel: usually 3 (RGB) or 1 (grey)
% nStack: number of stacked images
% usually 1; >1 for animations
% redSize: 2 = half the size (quarter of pixels)
% 3 = third the size (ninth of pixels)
% ... and so on
% Output:
% imNew: unit8([imRows/redSize x imColumns/redSize x nChannel x nStack])
%
% an alternative is : imNew = imresize(im,1/reduceImage,'bilinear');
% BUT 'bicubic' & 'bilinear' produces fuzzy lines
% IMHO this function produces nicer results as "imresize"
[nRow,nCol,nChannel,nStack] = size(im);
if redSize==1; return; end % nothing to do
if redSize~=round(abs(redSize)); error('"redSize" must be a positive integer'); end
if rem(nRow,redSize)~=0; error('number of pixel-rows must be a multiple of "redSize"'); end
if rem(nCol,redSize)~=0; error('number of pixel-columns must be a multiple of "redSize"'); end
nRowNew = nRow/redSize;
nColNew = nCol/redSize;
im = double(im).^2; % brightness rescaling from "linear to the human eye" to the "physics domain"; see youtube: /watch?v=LKnqECcg6Gw
im = reshape(im, nRow, redSize, nColNew*nChannel*nStack); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nRow, 1, nColNew*nChannel]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image. Size of result: [nColNew*nChannel, nRow, 1]
im = reshape(im, nColNew*nChannel*nStack, redSize, nRowNew); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nColNew*nChannel, 1, nRowNew]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image back. Size of result: [nRowNew, nColNew*nChannel, 1]
im = reshape(im, nRowNew, nColNew, nChannel, nStack); % putting all channels (rgb) back behind each other in the third dimension
im = uint8(sqrt(im./redSize^2)); % mean; re-normalize brightness: "scale linear to the human eye"; back in uint8
function map = createImMap(imRGB,nCol,startMap)
% createImMap creates a color-map including predefined colors.
% "rgb2ind" creates a map but there is no option to predefine some colors,
% and it does not handle stacked images.
% Input:
% imRGB: image, [imRows x imColumns x 3(RGB) x nStack] (unit8)
% nCol: total number of colors the map should have, [integer]
% startMap: predefined colors; colormap format, [p x 3] (double)
imRGB = permute(imRGB,[1 2 4 3]); % step1; make unified column-image (handling possible nStack)
imRGBcolumn = reshape(imRGB,[],1,3,1); % step2; make unified column-image
fullMap = double(permute(imRGBcolumn,[1 3 2]))./255; % "column image" to color map
[fullMap,~,imMapColumn] = unique(fullMap,'rows'); % find all unique colores; create indexed colormap-image
% "cmunique" could be used but is buggy and inconvenient because the output changes between "uint8" and "double"
nColFul = size(fullMap,1);
nColStart = size(startMap,1);
disp(['Number of colors: ' num2str(nColFul) ' (including ' num2str(nColStart) ' self defined)']);
if nCol<=nColStart; error('Not enough colors'); end
if nCol>nColFul; warning('More colors than needed'); end
isPreDefCol = false(size(imMapColumn)); % init
for iCol = 1:nColStart
diff = sum(abs(fullMap-repmat(startMap(iCol,:),nColFul,1)),2); % difference between a predefined and all colores
[mDiff,index] = min(diff); % find matching (or most similar) color
if mDiff>0.05 % color handling is not precise
warning(['Predefined color ' num2str(iCol) ' does not appear in image'])
continue
end
isThisPreDefCol = imMapColumn==index; % find all pixel with predefined color
disp([num2str(sum(isThisPreDefCol(:))) ' pixel have predefined color ' num2str(iCol)]);
isPreDefCol = or(isPreDefCol,isThisPreDefCol); % combine with overall list
end
[~,mapAdditional] = rgb2ind(imRGBcolumn(~isPreDefCol,:,:),nCol-nColStart,'nodither'); % create map of remaining colors
map = [startMap;mapAdditional];
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Items portrayed in this file
depicts
28 May 2018
image/gif
8dc1c035f22d03a276e921ca318f97876384f6de
1,941,381 byte
18.079999999999792 second
410 pixel
270 pixel
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:26, 28 May 2018 | 270 × 410 (1.85 MB) | Jahobr | User created page with UploadWizard |
File usage
The following 2 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on de.wikipedia.org
- Usage on ru.wikipedia.org
- Usage on tr.wikipedia.org