English: The evolution of a network by the Barabasi–Albert model. In every step, one new node appears, and in this case there is two new edges from the new node to the old ones.
Magyar: Egy hálózat fejlődése a Barabási–Albert modell szerint. Minden lépésben egy új csúcs jelenik meg, és ebben a változatban minden új csúcsból két él mutat a régi csúcsokhoz.
The code is (using the python-networkx and python-matplotlib packages on Ubuntu GNU/Linux distribution):
#! /usr/bin/python
# coding: utf-8
import networkx
#import pylab
from pylab import pi, cos, sin, linspace, array
import matplotlib.pyplot as plt
import os
node_number = 20
initial_nodes = 2
animation = False
animation = True
G=networkx.barabasi_albert_graph(node_number, initial_nodes)
# pos=networkx.graphviz_layout(G, prog="dot")
type="shell4"
pos=networkx.shell_layout(G)
#pos=networkx.graphviz_layout(G,prog='twopi',args=)
print pos
dir=os.path.join("images", type)
if not os.path.isdir(dir):
os.mkdir(dir)
Ge = networkx.empty_graph(node_number)
#networkx.draw(GG,pos, node_color="w")
for i in range(initial_nodes,node_number):
nodes = range(i+1)
GG = G.subgraph(nodes)
plt.figure(figsize=(8,8))
networkx.draw(GG,pos, node_color="w", alpha=0.5, node_color="blue", node_size=20, with_labels=False, hold=False)
#networkx.draw(Ge,pos, node_color="w", alpha=0.5, node_color="blue", node_size=20, with_labels=False, hold=True)
#nx.draw(G,pos,node_size=20,alpha=0.5,node_color="blue", with_labels=False)
xmax=max(xx for xx,yy in pos.values())
xmin=min(xx for xx,yy in pos.values() + [(0,0)])
ymax=max(yy for xx,yy in pos.values())
ymin=min(yy for xx,yy in pos.values() + [(0,0)])
dx = xmax - xmin
ddx=0.1*dx
dy = ymax - ymin
ddy=0.1*dy
plt.xlim(xmin-ddx,xmax+ddx)
plt.ylim(ymin-ddy,ymax+ddy)
plt.savefig("%s/barabasi_%s%02d.png" % (dir, type, i))
if animation:
input = os.path.join(dir, "*.png")
output = os.path.join(dir, "barabasi_albert.gif")
os.system("convert -delay 100 -loop 0 %s %s" % (input, output))
(If someone knows how to eliminate the frame around the network, write to me, please.)
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
{{Information |Description={{en|1=The evolution of a graph by the Barabasi Albert model. In every step, one new node appears, and in this case there is two new edges from the new node to the old ones. }} {{hu|1=Egy gráf fejlődése a Barabási-Albert mod