Jump to content

File:Amoeba4 400.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (1,896 × 1,917 pixels, file size: 263 KB, MIME type: image/png)

Summary

Description The amoeba of P(z, w)=50 z3 +83 z2 w+24 z w2 +w3+392 z2+414 z w+50 w2 -28 z +59 w-100
Date
Source Own work
Author User:Oleg Alexandrov
File:Amoeba4 400.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.

File:Amoeba4 400.png → File:Amoeba4 400.svg

For more information, see Help:SVG.

In other languages
Alemannisch  Bahasa Indonesia  Bahasa Melayu  British English  català  čeština  dansk  Deutsch  eesti  English  español  Esperanto  euskara  français  Frysk  galego  hrvatski  Ido  italiano  lietuvių  magyar  Nederlands  norsk bokmål  norsk nynorsk  occitan  Plattdüütsch  polski  português  português do Brasil  română  Scots  sicilianu  slovenčina  slovenščina  suomi  svenska  Tiếng Việt  Türkçe  vèneto  Ελληνικά  беларуская (тарашкевіца)  български  македонски  нохчийн  русский  српски / srpski  татарча/tatarça  українська  ქართული  հայերեն  বাংলা  தமிழ்  മലയാളം  ไทย  한국어  日本語  简体中文  繁體中文  עברית  العربية  فارسی  +/−
New SVG image

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Source code (MATLAB)

% find the amoeba of the polynomial
% p(z, w)=50 z^3+83 z^2 w+24 z w^2+w^3+392 z^2+414 z w+50 w^2-28 z +59 w-100
% See http://en.wikipedia.org/wiki/Amoeba_(mathematics).

function main()

   figure(3); clf; hold on;
   axis equal; axis off;
   axis([-4.5, 5, -3.5, 6]); 
   fs = 20; set(gca, 'fontsize', fs);
   ii=sqrt(-1);
   tiny = 100*eps;
   
   Ntheta = 500; % for Ntheta=500 the code will run very slowly, but will get a good resolution
   NR=      Ntheta; 

   % R is a vector of numbers, exponentiall distributed
   A=-5; B=5;
   LogR  = linspace(A, B, NR);
   R     = exp(LogR);

   % a vector of angles, uniformly distributed
   Theta = linspace(0, 2*pi, Ntheta);

   degree=3;
   Rho = zeros(1, degree*Ntheta); % Rho will store the absolute values of the roots
   One = ones (1, degree*Ntheta);

   % play around with these numbers to get various amoebas
   b1=1;  c1=1; 
   b2=3;  c2=15;
   b3=20; c3=b3/5; 
   d=-80; e=d/4;
   f=0; g=0;
   h=20; k=30; l=60;
   m=0; n = -10; p=0; q=0;
   
%  Draw the 2D figure as union of horizontal slices and then union of vertical slices.
%  The resulting picture achieves much higher resolution than any of the two individually.
   for type=1:2

	  for count_r = 1:NR
		 count_r
		 
		 r = R(count_r);
		 for count_t =1:Ntheta
			
			theta = Theta (count_t);

			if type == 1
			   z=r*exp(ii*theta);

%                         write p(z, w) as a polynomial in w with coefficients polynomials in z 
%                         first comes the coeff of the highest power of w, then of the lower one, etc.
			   Coeffs=[1+m,
				   c1+c2+c3+b1*z+b2*z+b3*z+k+p*z,
				   e+g+(c1+b1*z)*(c2+b2*z)+(c1+c2+b1*z+b2*z)*(c3+b3*z)+l*z+q*z^2,
				   d+f*z+(c3+b3*z)*(e+(c1+b1*z)*(c2+b2*z))+h*z^2+n*z^3];

			else
%                          write p(z, w) as a polynomial in z with coefficients polynomials in w 		
			   w=r*exp(ii*theta);
			   Coeffs=[b1*b2*b3+n,
				   h+b1*b3*(c2+w)+b2*(b3*(c1+w)+b1*(c3+w))+q*w,
				   (b2*c1+b1*c2)*c3+b3*(c1*c2+e)+f+(b1*c2+b3*(c1+c2)+b1*c3+b2*(c1+c3)+l)*w+...
				   (b1+b2+b3)*w^2+p*w^2,
				   d+c3*(c1*c2+e)+(c1*c2+(c1+c2)*c3+e+g)*w+(c1+c2+c3+k)*w^2+w^3+m*w^3];
			end
			
%                       find the roots of the polynomial with given coefficients
			Roots = roots(Coeffs);
			
%                       log |root|. Use max() to avoid log 0.
			Rho((degree*(count_t-1)+1):(degree*count_t))= log (max(abs(Roots), tiny)); 
		 end
		 

%        plot the roots horizontally or vertically
		 if type == 1
		        plot(LogR(count_r)*One, Rho, 'b.');
		 else
		        plot(Rho, LogR(count_r)*One, 'b.');
		 end
		 
	  end

   end
   
   saveas(gcf, sprintf('amoeba4_%d.eps', NR), 'psc2');

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

image/png

58973343fec280e75a3e896a225f156f45a7741c

269,569 byte

1,917 pixel

1,896 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current03:59, 9 March 2007Thumbnail for version as of 03:59, 9 March 20071,896 × 1,917 (263 KB)Oleg AlexandrovMade by myself with Matlab. {{PD-self}}

The following page uses this file:

Global file usage

The following other wikis use this file: